Analysis of cloud macro-physical characteristics in Xiangyang of Hubei Province based on ceilometer data
-
摘要:
利用湖北省襄阳市2019—2021年3 a云高仪观测资料,统计云出现频率、云层数和云底高度等指标,对该地区云的宏观特征进行分析,结果表明:(1) 襄阳市全年云系覆盖率较高,3 a平均云出现频率为61.3%。云出现频率呈现夏季高于冬季的季节变化特征,以及白天低、夜间高的日变化特征。(2) 云层数以单层云为主(78.3%),尤其在冬季(80.1%)。多层云分布中,双层云所占比例最大(18.5%),且多层云出现频率随云层数增加而降低;多层云出现频率夏季高、冬季低,主要与夏季水汽相对充足、温度较高使得对流旺盛等因素有关。(3) 云底高度在1.0 km以下的云,1月份出现频率为26%,云系分布较为分散,7月份达40%,云系相对集中;而云底高度在1.0~3.5 km之间的云,1月份出现频率达57%,云系分布较为集中,7月份为24%,云系相对分散。(4) 所有的对流性降水云,出现在6—8月的占83.3%,傍晚前后出现对流性降水的概率最大;云底高度上,对流性降水云平均云底高度较所有降水云平均结果更低,低云所占比例更大。
Abstract:In this study, the cloud macro-physical characteristics in Xiangyang of Hubei Province are statistically analyzed from the aspects of cloud occurrence frequency, number of cloud layers, and cloud base height by using the observation data of ceilometer from 2019 to 2021. The results are as follows. (1) The cloud coverage in Xiangyang is relatively high throughout the year, with an average cloud occurrence frequency of 61.3% in the three years. The frequency of cloud occurrence shows a seasonal variation of higher in summer but lower in winter, and a diurnal variation of higher level during nighttime but lower during daytime. (2) The cloud layer is dominated by single-layer clouds (78.3%), especially in winter (80.1%). In the multi-layer cloud system, two-layer clouds account for the largest proportion (18.5%). The occurrence frequency of multi-layer clouds decreases with the increase in the number of cloud layers, and it is usually high in summer but low in winter, which is mainly related to the relatively sufficient water vapor in summer and the strong convection caused by high temperatures. (3) For clouds with a cloud base height below 1.0 km, the occurrence frequency is 26% in January and 40% in July, indicating that the cloud distribution is relatively dispersed in January but relatively concentrated in July. However, for clouds with a cloud base height between 1.0 and 3.5 km, the occurrence frequency is 57% in January and 24% in July, that is, the cloud distribution is relatively concentrated in January, while relatively dispersed in July. (4) Convective precipitation clouds mainly occur from June to August, accounting for 83.3% of all convective precipitation clouds, and the probability of convective precipitation around the evening is the highest. In terms of cloud base height distribution, the average cloud base height of convective precipitation clouds is lower than that of all precipitation clouds, with a large occurrence frequency of low clouds.
-
-
图 4 2019—2021年襄阳市探测到所有云(a)以及单层(b)、双层(c)、三层(d) 云时的云底高度频率分布
Figure 4. Frequency distribution of cloud base height for (a) all found layers aggregated, (b) the single layer when 1 layer is detected, (c) the lower and higher layers when 2 layers are detected, (d) the lower, middle and higher layers when 3 layers are detected
图 5 2019—2021年襄阳市单层、双层和三层云的云底高度分布盒须图(最上方和最下方的短横线分别为第90和第10百分位,盒子的上下边缘分别对应上下四分位数,盒子中间的横线为中位数,菱形表示平均值)
Figure 5. Box diagram of cloud base height distribution of single-layer, two-layer, and three-layer clouds in Xiangyang during 2019-2021. Note that diamond-shaped markers and horizontal lines in the box present the average and median values, whiskers show the 25~75% data range and bars give the 10th and 90th percentiles
图 6 2019—2021年1月(a)、4月(b)、7月(c)、10月(d)襄阳市单层云云底高度频率分布以及不同季节代表性月份中低云、中云和高云出现比例和云底高度平均值(e)
Figure 6. Standardized single-layer cloud base height frequencies in (a) January, (b) April, (c) July, (d) October, and (e) the proportion of low, middle, and high clouds and the averaged cloud base heights in representative months of different seasons in Xiangyang during 2019-2021
表 1 2019—2021单层、双层、三层及以上云层数出现比例(单位: %)
Table 1 Proportion (unit: %) of single-layer, two-layer, three-layer, and other multi-layer clouds when clouds are detected during 2019-2021
云层数 2019 2020 2021 平均 单层 76.5 76.7 81.7 78.3 双层 19.7 19.7 16.0 18.5 三层 3.3 3.2 2.0 2.9 三层以上 0.5 0.4 0.3 0.3 -
陈广超. 2021. 基于星载雷达资料的南海深对流云垂直结构特征分析[D]. 长沙: 国防科技大学. Chen G C. 2021. Analysis of the vertical structure characteristics of deep convective clouds in the South China Sea based on spaceborne radar data[D]. Changsha: National University of Defense Technology (in Chinese)
崔延星, 刘黎平, 何建新, 等. 2018. 基于云雷达、C波段连续波雷达和激光云高仪融合数据的华南夏季云参数统计分析[J]. 成都信息工程大学学报, 33(3): 242-249. doi: 10.16836/j.cnki.jcuit.2018.03.004 Cui Y X, Liu L P, He J X, et al. 2018. Statistical analysis of South China summer cloud parameters based on cloud radar, C-band continuous wave radar and ceilometer fusion data[J]. Journal of Chengdu University of Information Technology, 33(3): 242-249. doi: 10.16836/j.cnki.jcuit.2018.03.004
冯晓, 蔡宏珂, 衡志炜. 2021. 中国及周边地区多层云垂直结构时空分布特征[J]. 高原山地气象研究, 41(3): 9-16. doi: 10.3969/j.issn.1674-2184.2021.03.002 Feng X, Cai H K, Heng Z W. 2021. Spatial and temporal distribution characteristics of vertical structure of multilayer clouds in China and surrounding areas[J]. Plateau and Mountain Meteorology Research, 41(3): 9-16. doi: 10.3969/j.issn.1674-2184.2021.03.002
符传博, 丹利, 冯锦明, 等. 2019. 1960—2012年中国地区总云量时空变化及其与气温和水汽的关系[J]. 大气科学, 43(1): 87-98. doi: 10.3878/j.issn.1006-9895.1801.17235 Fu C B, Dan L, Feng J M, et al. 2019. Temporal and spatial variations of total cloud amount and their possible relationships with temperature and water vapor over China during 1960 to 2012[J]. Chinese Journal of Atmospheric Sciences, 43(1): 87-98. doi: 10.3878/j.issn.1006-9895.1801.17235
高茜, 王广河, 史月琴. 2011. 华北层状云系人工增雨个例数值研究[J]. 气象, 37(10): 1241-1251. doi: 10.7519/j.issn.1000-0526.2011.10.007 Gao Q, Wang G H, Shi Y Q. 2011. Numerical simulation and seeding test on the stratiform precipitation around Beijing [J]. Meteorological Monthly, 37(10): 1241-1251. doi: 10.7519/j.issn.1000-0526.2011.10.007
郭婧晗, 薛惠文, 刘晓阳. 2015. 北京地区夏季云出现概率及云底高度分布的特征分析[J]. 北京大学学报(自然科学版), 51(4): 718-724. doi: 10.13209/j.0479-8023.2015.002 Guo J H, Xue H W, Liu X Y. 2015. Characteristics of cloud occurrence frequency and cloud base height in summer over Beijing[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 51(4): 718-724. doi: 10.13209/j.0479-8023.2015.002
霍娟, 吕达仁, 段树, 等. 2020. 基于2014—2017年Ka毫米波雷达数据分析北京地区云宏观分布特征[J]. 气候与环境研究, 25(1): 45-54. doi: 10.3878/j.issn.1006-9585.2019.18084 HuoJ, Lǚ D R, Duan S, et al. 2020. Cloud macro-physical characteristics in Beijing based on Ka radar data during 2014-2017[J]. Climatic and Environmental Research, 25(1): 45-54. doi: 10.3878/j.issn.1006-9585.2019.18084
李德俊, 袁正腾, 陈英英. 2021. 湖北对流云结构特征及人工增雨技术[M]. 北京: 气象出版社: 1-3. Li D J, Yuan Z T, Chen Y Y, et al. 2021. Characteristics of convective cloud structure and technologies for artificial precipitation enhancement in Hubei region[M]. Beijing: China Meteorological Press: 1-3 (in Chinese)
李大山, 章澄昌, 许焕斌, 等. 2002. 人工影响天气现状与展望[M]. 北京: 气象出版社: 303-309. Li D S, Zhang C C, Xu H B, et al. 2002. The current situation and prospects of weather modification[M]. Beijing: China Meteorological Press: 303-309 (in Chinese)
李积明, 黄建平, 衣育红, 等. 2009. 利用星载激光雷达资料研究东亚地区云垂直分布的统计特征[J]. 大气科学, 33(4): 698-707. doi: 10.3878/j.issn.1006-9895.2009.04.04 Li J M, Huang J P, Yi Y H, et al. 2009. Analysis of vertical distribution of cloud in East Asia by space-based lidar data[J]. Chinese Journal of Atmospheric Sciences, 33(4): 698-707. doi: 10.3878/j.issn.1006-9895.2009.04.04
李琦, 蔡淼, 周毓荃, 等. 2021. 基于探空云识别方法的云垂直结构分布特征[J]. 大气科学, 45(6): 1161-1172. doi: 10.3878/j.issn.1006-9895.2105.19246 Li Q, Cai M, Zhou Y Q, et al. 2021. Characteristics of cloud vertical distribution based on cloud identification by radiosonde[J]. Chinese Journal of Atmospheric Sciences, 45(6): 1161-1172. doi: 10.3878/j.issn.1006-9895.2105.19246
李昀英, 宇如聪, 徐幼平, 等. 2003. 中国南方地区层状云的形成和日变化特征分析[J]. 气象学报, 61(6): 733-743. doi: 10.3321/j.issn:0577-6619.2003.06.010 Li Y Y, Yu R C, Xu Y P, et al. 2003. The formation and diurnal changes of stratiform clouds in southern China[J]. Acta Meteorologica Sinica, 61(6): 733-743. doi: 10.3321/j.issn:0577-6619.2003.06.010
刘雪梅, 张明军, 王圣杰, 等. 2016. 中国降水云云底高度的估算和分析[J]. 气象, 42(9): 1135-1145. doi: 10.7519/j.issn.1000-0526.2016.09.011 Liu X M, Zhang M J, Wang S J, et al. 2016. Estimation and analysis of precipitation cloud base height in China[J]. Meteorological Monthly, 42(9): 1135-1145. doi: 10.7519/j.issn.1000-0526.2016.09.011
乔晓燕, 张子曰, 李林, 等. 2020. 基于激光云高仪的雾霾光学特性研究[J]. 沙漠与绿洲气象, 14(3): 137-143. doi: 10.12057/j.issn.1002-0799.2020.03.017 Qiao X Y, Zhang Z Y, Li L, et al. 2020. Study of distinction between haze and fog based on ceilometer[J]. Desert and Oasis Meteorology, 14(3): 137-143. doi: 10.12057/j.issn.1002-0799.2020.03.017
尚博. 2011. 利用Cloudsat对华北、江淮云垂直结构及降水云特征的研究[D]. 南京: 南京信息工程大学. Shang B. 2011. Research on vertical structure of cloud and precipitation feature of cloudsat data in Hua-Bei and JiangHuai[D]. Nanjing: Nanjing University of Information Science and Technology (in Chinese)
尚博, 周毓荃, 刘建朝, 等. 2012. 基于Cloudsat的降水云和非降水云垂直特征[J]. 应用气象学报, 23(1): 1-9. doi: 10.11898/1001-7313.20120101 Shang B, Zhou Y Q, Liu J Z, et al. 2012. Comparing vertical structure of precipitation cloud and non-precipitation cloud using cloudsat[J]. Journal of Applied Meteorological Science, 23(1): 1-9. doi: 10.11898/1001-7313.20120101
唐钰寒. 2021. 中国东部地区云底高度研究[D]. 兰州: 兰州大学. Tang Y H. 2021. Research on the cloud base height over eastern China[D]. Lanzhou: Lanzhou University (in Chinese)
万霞, 徐桂荣, 万蓉, 等. 2020. 青藏高原东侧甘孜云雷达观测的非降水云垂直结构特征分析[J]. 暴雨灾害, 39(5): 442-450. doi: 10.3969/j.issn.1004-9045.2020.05.002 Wan X, Xu G R, Wan R, et al. 2020. Vertical structure of non-precipitation cloud obtained from cloud radar observation at Ganzi in the eastern Qinghai-Tibet Plateau[J]. Torrential Rain and Disasters, 39(5): 442-450. doi: 10.3969/j.issn.1004-9045.2020.05.002
赵静, 顾桃峰, 吴宜等. 2023. 激光云高仪云底高度对比及边界分析[J]. 气象水文海洋仪器, 40(4): 1-4. doi: 10.19441/j.cnki.issn1006-009x.2023.04.002 Zhao J, Gu T F, Wu Y, et al. 2023. Comparison of cloud base heights and boundary analysis of laser ceilometer[J]. Meteorological, Hydrological and Marine Instruments, 40(4): 1-4. doi: 10.19441/j.cnki.issn1006-009x.2023.04.002
赵姝慧, 班显秀, 袁健, 等. 2014. 8、9月沈阳地区卫星观测云垂直结构的气候特征分析[J]. 高原气象, 33(6): 1640-1647. doi: 10.7522/j.issn.1000-0534.2013.00113 Zhao S H, Ban X X, Yuan J, et al. 2014. Statistical analysis on climate characteristics of the cloud vertical structure using satellite in Shenyang region during August and September[J]. Plateau Meteorology, 33(6): 1640-1647. doi: 10.7522/j.issn.1000-0534.2013.00113
赵增亮, 毛节泰, 魏强, 等. 2010. 西北地区春季云系的垂直结构特征飞机观测统计分析[J]. 气象, 36(5): 71-77. doi: 10.7519/j.issn.1000-0526.2010.5.010 Zhao Z L, Mao J T, Wei Q, et al. 2010. A study of vertical structure of spring stratiform clouds in Northwest China[J]. Meteorological Monthly, 36(5): 71-77. doi: 10.7519/j.issn.1000-0526.2010.5.010
周毓荃, 陈英英, 李娟, 等. 2008. 用FY-2C/D卫星等综合观测资料反演云物理特性产品及检验[J]. 气象, 34(12): 27-35. doi: 10.7519/j.issn.1000-0526.2008.12.004 Zhou Y Q, Chen Y Y, Li J, et al. 2008. Retrieval and preliminary test of cloud physical parameters from combination of FY-2C/D geostationary satellite data and other observation data[J]. Meteorological Monthly, 34(12): 27-35. doi: 10.7519/j.issn.1000-0526.2008.12.004
周毓荃, 欧建军. 2010. 利用探空数据分析云垂直结构的方法及其应用研究[J]. 气象, 36(11): 50-58. doi: 10.7519/j.issn.1000-0526.2010.11.008 Zhou Y Q, Ou J J. 2010. The method of cloud vertical structure analysis using rawinsonde observation and its applied research[J]. Meteorological Monthly, 36(11): 50-58. doi: 10.7519/j.issn.1000-0526.2010.11.008
Bringi V N, Chandrasekar V, Hubbert J, et al. 2003. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis[J]. Journal of the Atmospheric Sciences, 60(2): 354-365. doi: 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
Chen B J, Yang J, Pu J P, et al. 2013. Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China[J]. Journal of the Meteorological Society of Japan, 91(2): 215-227. doi: 10.2151/jmsj.2013-208
Costa-Surós M, Calbó J, González J A, et al. 2013. Behavior of cloud base height from ceilometer measurements[J]. Atmospheric Research, 127: 64-76. doi: 10.1016/j.atmosres.2013.02.005
Pan Z, Gong W, Mao F, et al. 2015. Macrophysical and optical properties of clouds over East Asia measured by CALIPSO[J]. Journal of Geophysical Research: Atmospheres, 120(22): 11,653-611,668. doi: 10.1002/2015JD023735
Poore K, Wang J, Rossow W. 1995. Cloud layer thicknesses from a combination of surface and upper-air observations[J]. Journal of Climate, 8(3): 550-568. doi: 10.1175/1520-0442(1995)008<0550:CLTFAC>2.0.CO;2
Sharma S, Vaishnav R, Shukla M, et al. 2015. Evaluation of cloud base height measurements from Ceilometer CL31 and MODIS satellite over Ahmedabad, India[J]. Atmospheric Measurement Techniques, 8(2): 11729-11752. doi: 10.5194/amt-9-711-2016
Stephens G L, Tsay S C, Jr P W S, et al. 1990. The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback[J]. Journal of the Atmospheric Sciences, 47(14): 1742-1754. doi: 10.1175/1520-0469(1990)0472.0.CO;2
Stephens G L, Webster P J. 1981. Clouds and climate: sensitivity of simple systems[J]. Journal of the Atmospheric Sciences, 38(2): 235-247. doi: 10.1175/1520-0469(1981)038<0235:cacsos>2.0.CO;2
Wang J H, Rossow W B. 1998. Effects of cloud vertical structure on atmospheric circulation in the GISS GCM[J]. Journal of Climate, 11 (11): 3010-3029. doi: 10.1175/1520-0442(1998)011<3010:EOCVSO>2.0.CO;2
Wang J H, Rossow W B, Zhang Y C. 2000. Cloud vertical structure and its variations from a 20Yr global rawinsonde dataset[J]. Journal of Climate, 13(17): 3041-3056. doi: 10.1175/1520-0442(2000)013<3041:CVSAIV>2.0.CO;2