高级搜索
周悦, 高正旭, 叶丽梅, 吕晶晶, 杨加伦. 2019: 雨雾共生天气下积冰模型关键参量的研究. 暴雨灾害, 38(6): 632-639. DOI: 10.3969/j.issn.1004-9045.2019.06.008
引用本文: 周悦, 高正旭, 叶丽梅, 吕晶晶, 杨加伦. 2019: 雨雾共生天气下积冰模型关键参量的研究. 暴雨灾害, 38(6): 632-639. DOI: 10.3969/j.issn.1004-9045.2019.06.008
ZHOU Yue, GAO Zhengxu, YE Limei, LÜ Jingjing, YANG Jialun. 2019: Study on the key parameters of icing model during the supercooled fog mixed with freezing drizzle weather. Torrential Rain and Disasters, 38(6): 632-639. DOI: 10.3969/j.issn.1004-9045.2019.06.008
Citation: ZHOU Yue, GAO Zhengxu, YE Limei, LÜ Jingjing, YANG Jialun. 2019: Study on the key parameters of icing model during the supercooled fog mixed with freezing drizzle weather. Torrential Rain and Disasters, 38(6): 632-639. DOI: 10.3969/j.issn.1004-9045.2019.06.008

雨雾共生天气下积冰模型关键参量的研究

Study on the key parameters of icing model during the supercooled fog mixed with freezing drizzle weather

  • 摘要: 利用在2008—2016年冬季湖北恩施雷达站、金沙本底站、神农架大草坪和神农顶观测得到的30次持续时间超过24 h的完整电线积冰过程观测资料,分析了雨雾共生天气对积冰过程的宏观影响,根据积冰过程的物理模型探讨了过冷雾和冻毛毛雨天气下关键模拟参量的分布特征,最后给出了雨雾共生天气积冰厚度模拟的演变特征。结果表明:山区积冰的持续时间是影响其过程最大冰厚的关键因素,雨凇过程中冻毛毛雨的发生时次最集中,且其出现可能导致冰厚爆发性增长,有无冻毛毛雨出现时段的冰厚增长率平均值分别为1.26 mm·h-1和-0.11 mm·h-1;碰撞率是抑制过冷雾积冰的主要参量,其均值在0.1左右,而冻结率则是抑制冻毛毛雨积冰的主要参量,其均值在0.6左右;过冷雾积冰和冻毛毛雨积冰分别表现出阶段性增长和持续增长的变化特征,且冻毛毛雨积冰会抑制过冷雾积冰的发展。

     

    Abstract: Based on complete observations of 30 wire icing cases with the duration over 24 h at Enshi radar station, Jinsha background station, Dacaoping and Shenlongding in Shenlongjia over Hubei in the winters of 2008 to 2016, we have conducted an analysis of the effect of supercooled fog mixed with freezing drizzle on ice accretion processes, discussed distributions and influence characteristics of key simulation parameters on the basis of the icing physic model, and lastly, revealed the evolutions of simulated ice thickness of supercooled fog and freezing drizzle. The results show that the duration of icing in the mountain area is a key factor that determines the maximum ice thickness during the icing processes. The frequency of freezing drizzle is mostly concentrated in the processes of glaze, probably leading to the explosive growth of ice thickness when it occurs. The averaged growth rates of ice thickness during the freezing drizzle and no-precipitation periods are 1.26 mm·h-1 and -0.11 mm·h-1, respectively. Collision efficiency is the main parameter restraining the development of icing during supercooled-fog period, with an averaged value of 0.1 or so. Meanwhile, accretion efficiency is the main parameter restraining the development of icing during freezing-drizzle period, and its mean value is around 0.6. Supercooled-fog icing and freezing-drizzle icing show the characteristics of phased growth and continuous growth, respectively. The freezing-drizzle icing restrains the development of supercooled-fog icing.

     

/

返回文章
返回