Advanced Search
HAN Furong, LU Xiang, WU Tianyi, XU Yejia, HAN Xing, CAI Xiaodong. 2023: Evaluation of monitoring ability of the integrated multi-satellite retrievals for precipitation during typhoon landing in Zhejiang from 2015 to 2020. Torrential Rain and Disasters, 42(1): 57-66. DOI: 10.12406/byzh.2022-015
Citation: HAN Furong, LU Xiang, WU Tianyi, XU Yejia, HAN Xing, CAI Xiaodong. 2023: Evaluation of monitoring ability of the integrated multi-satellite retrievals for precipitation during typhoon landing in Zhejiang from 2015 to 2020. Torrential Rain and Disasters, 42(1): 57-66. DOI: 10.12406/byzh.2022-015

Evaluation of monitoring ability of the integrated multi-satellite retrievals for precipitation during typhoon landing in Zhejiang from 2015 to 2020

More Information
  • Received Date: February 06, 2022
  • Accepted Date: November 05, 2022
  • Available Online: March 07, 2023
  • Based on the observational data of precipitation at the stations of Zhejiang, relative bias(RB), root mean square error(RMSE), and correlation coefficient (CC) were used to evaluate the quasi-real-time product IMERG_ER V06B of GPM satellite during the landing periods of typhoon Chan-hom, Yagi, Lekima, Mitag, and Hagupit during 2015 to 2020. POD, FAR and CSI were used to evaluate the ability of precipitation retrieval of IMERG at different precipitation levels. The results show that the IMERG precipitation data of GPM can reflect the spatial distribution characteristics of precipitation, but its ability to capture the range of heavy precipitation is still insufficient. Precipitation during typhoon Yagi, Lekima, Mitag, and Hagupit were overestimated, while precipitation during typhoon Chan-hom were underestimated. IMERG has the ability to capture the change of precipitation of typhoon Hagupit, followed by typhoon Chan-hom, Yagi, and Lekima, and typhoon Mitag is the worst. According to the results of classification test, POD and CSI decrease, while FAR increases with the increase of precipitation, which indicates that IMERG has the best ability to identify light rain, but poor ability to capture heavy rain. Meanwhile, IMERG overestimated the possibility of heavy precipitation. Objectively, precipitation product of IMERG_ER V06B is insufficient to capture the precipitation intensity of typhoon, and the quantitative error of individual typhoon is large. Overall, it has a fair ability to capture the number and variation of peak and valley of typhoon rainfall, which can be applied to estimate the change of typhoon rainfall in complex terrain, due to its similar if not better ability of retrieving precipitation in mountainous area as in plain area.

  • 陈爱军, 吴雪菲, 楚志刚. 2021. 精细化评估GPM/IMERG产品对台风"妮坦" 降水的观测精度[J]. 气象科学, 41(5): 678-686. doi: 10.12306/2020jms.0037

    Chen A J, Wu X F, Chu Z G. 2021. Refined evaluation of the accuracy of GPM/IMERG in the precipitation process of typhoon Nida[J]. Journal of the Meteorological Sciences, 41(5): 678-686 (in Chinese). doi: 10.12306/2020jms.0037
    陈晓宏, 钟睿达, 王兆礼, 等. 2017. 新一代GPM IMERG卫星遥感降水数据在中国南方地区的精度及水文效用评估[J]. 水利学报, 48(10): 1147-1156. doi: 10.13243/j.cnki.slxb.20170202

    Chen X H, Zhong R D, Wang Z L, et al. 2017. Evaluation on the accuracy and hydrological performance of the latest-generation GPM IMERG product over South China[J]. Journal of Hydraulic Engineering, 48(10): 1147-1156 (in Chinese). doi: 10.13243/j.cnki.slxb.20170202
    陈宣淼, 余贞寿, 叶子祥. 2018. 浙南闽北登陆台风发生区域性暴雨增幅的环境场特征分析[J]. 暴雨灾害, 37(3): 246-256. doi: 10.3969/j.issn.1004-9045.2018.03.007

    Chen X M, Yu Z S, Ye Z X. 2018. Analysis of atmospheric circulation characteristics of regional rainstorm reinforcement associated with typhoons making landfall in northern Fujian and southern Zhejiang[J]. Torrential Rain and Disasters, 37(3): 246-256 (in Chinese). doi: 10.3969/j.issn.1004-9045.2018.03.007
    韩芙蓉, 鹿翔, 冯晓钰, 等. 2021. 台风Lekima(1909)登陆前后动热力结构变化对浙江极端降水的影响[J]. 热带气象学报, 37(1): 34-48. doi: 10.16032/j.issn.1004-4965.2021.004

    Han F R, Lu X, Feng X Y, et al. 2021. Analysis of dynamic and thermodynamic structure of typhoon Lekima(1909) before and after its landfall[J]. Journal of Tropical Meteorology, 37(1): 34-48 (in Chinese). doi: 10.16032/j.issn.1004-4965.2021.004
    金晓龙, 邵华, 张弛, 等. 2016. GPM卫星降水数据在天山山区的适用性分析[J]. 自然资源学报, 31(12): 2074-2085. doi: 10.11849/zrzyxb.20160057

    Jin X L, Shao H, Zhang C, et al. 2016. The applicability evaluation of three satellite products in Tianshan Mountains[J]. Journal of Natural Resources, 31(12): 2074-2085 (in Chinese). doi: 10.11849/zrzyxb.20160057
    李芳, 孔宇, 高谦. 2020. GPM/IMERG产品在鲁南地区的精度评估[J]. 气象科技, 48(4): 474-481. doi: 10.19517/j.1671-6345.20190330

    Li F, Kong Y, Gao Q. 2020. Evaluation of GPM/IMERG products in Southern Shandong[J]. Meteorological Science and Technology, 48(4): 474-481 (in Chinese). doi: 10.19517/j.1671-6345.20190330
    李伶杰, 胡庆芳, 黄勇, 等. 2018. 近实时卫星降水数据对南京"20170610"极端性强降水过程的监测分析[J]. 高原气象, 37(3): 806-814. doi: 10.7522/j.issn.1000-0534.2017.00080

    Li L J, Hu Q F, Huang Y, et al. 2018. Monitoring and analysis of the extreme heavy rainfall process on June 10, 2017 in Nanjing using five near real time satellite rainfall estimations[J]. Plateau Meteorology, 37(3): 806-814 (in Chinese). doi: 10.7522/j.issn.1000-0534.2017.00080
    李晓俞, 陈生, 梁振清, 等. 2020. 台风"山竹" 期间GPM卫星降水产品的误差评估[J]. 气象研究与应用, 41(3): 8-15. doi: 10.19849/j.cnki.cn45-1356/p.2020.3.02

    Li X Y, Chen S, Liang Z Q, et al. 2020. Performance assessment of satellite-based quantitative precipitation estimation during typhoon Mangkhut[J]. Journal of Meteorological Research and Application, 41(3): 8-15 (in Chinese). doi: 10.19849/j.cnki.cn45-1356/p.2020.3.02
    刘国, 朱自伟, 谭显辉. 2017. 高分辨率遥感降水产品对强降水的监测能力评估-以2014年"威马逊" 台风为例[J]. 亚热带资源与环境学报, 12(4): 39-48. doi: 10.19687/j.cnki.1673-7105.2017.04.005

    Liu G, Zhu Z W, Tan X H. 2017. Assessments of high resolution multi-satellite precipitation products on extreme storm event monitoring: A case study of typhoon"Rammasun"in 2014[J]. Journal of Subtropical Resources and Environment, 12(4): 39-48 (in Chinese). doi: 10.19687/j.cnki.1673-7105.2017.04.005
    邱金晶, 余贞寿, 陈锋. 2017. 2000-2013年5-10月TRMM测雨产品3B42RT在浙江地区的评估检验[J]. 暴雨灾害, 36(5): 467-474. doi: 10.3969/j.issn.1004-9045.2018.03.007

    Qiu J J, Yu Z S, Chen F. 2017. Evaluation and verification of TRMM 3B42RT precipitation retrieval products during May to October from 2000 to 2013 in Zhejiang[J]. Torrential Rain and Disasters, 36(5): 467-474 (in Chinese). doi: 10.3969/j.issn.1004-9045.2018.03.007
    任英杰, 雍斌, 鹿德凯, 等. 2019. 全球降水计划多卫星降水联合反演IMERG卫星降水产品在中国大陆地区的多尺度精度评估[J]. 湖泊科学, 31(2): 560-572. doi: 10.18307/2019.0224

    Ren Y J, Yong B, Lu D K, et al. 2019. Evaluation of the Integrated Multi-satellitE Retrievals (IMERG) for Global Precipitation Measurement (GPM) mission over the Mainland China at multiple scales[J]. Journal of Lake Sciences, 31(2): 560-572 (in Chinese). doi: 10.18307/2019.0224
    谭显辉, 王晶晶, 刘国, 等. 2017. 基于多卫星遥感产品的极端降水监测研究[J]. 地理信息世界, 24(1): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-CHRK201701023.htm

    Tan X H, Wang J J, Liu G, et al. 2017. Study on extreme precipitation monitoring based on multi-satellite remote sensing products[J]. Geomatics World, 24(1): 82-87 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHRK201701023.htm
    唐国强, 万玮, 曾子悦, 等. 2015. 全球降水测量(GPM)计划及其最新进展综述[J]. 遥感技术与应用, 30(4): 607-615. doi: 10.11873/j.issn.1004-0323.2015.4.0607

    Tang G Q, Wan W, Zeng Z Y, et al. 2015. An overview of the Global Precipitation Measurement(GPM) mission and it's latest development[J]. Remote Sensing Technology and Application, 30(4): 607-615 (in Chinese). doi: 10.11873/j.issn.1004-0323.2015.4.0607
    汪梓彤, 李石宝, 张志友. 2021. GPM近实时降水产品在青藏高原的多尺度精度评价[J]. 人民黄河, 43(4): 43-49, 116. doi: 10.3969/j.issn.1000-1379.2021.04.008

    Wang Z T, LiS B, Zhang Z Y. 2021. Multi-scale accuracy evaluation of GPM precipitation products over the Qinghai-Tibet Plateau[J]. Yellow River, 43(4): 43-49, 116 (in Chinese). doi: 10.3969/j.issn.1000-1379.2021.04.008
    肖柳斯, 张阿思, 闵超, 等. 2019. GPM卫星降水产品在台风极端降水过程的误差评估[J]. 高原气象, 38(5): 993-1003. doi: 10.7522/j.issn.1000-0534.2018.00143

    Xiao L S, Zhang A S, Min C, et al. 2019. Evaluation of GPM satellite-based precipitation estimates during three tropical-related extreme rainfall events[J]. Plateau Meteorology, 38(5): 993-1003 (in Chinese). doi: 10.7522/j.issn.1000-0534.2018.00143
    赵平伟, 李斌, 王佳妮, 等. 2021. GPM IMERG和ERA5降水数据精度在云南复杂地形区域的评估检验[J]. 气象科技, 49(1): 114-123. doi: 10.19517/j.1671-6345.20190514

    Zhao P W, Li B, Wang J N, et al. 2021. Accuracy evaluation and comparison of GPM IMERG and ERA5 precipitation products over complex terrain of Yunnan[J]. Meteorological Science and Technology, 49(1): 114-123(in Chinese). doi: 10.19517/j.1671-6345.20190514
    Bhuiyan M A E, Yang F F, Biswas N K, et al. 2020. Machine learning-based error modeling to improve GPM IMERG precipitation product over the Brahmaputra River basin[J]. Forecasting, 2(3): 248-266. doi: 10.3390/forecast2030014
    Hamada A, Takayabu Y N. 2016. Improvements in detection of light precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR)[J]. Journal of Atmospheric and Oceanic Technology, 33(4): 653-667. doi: 10.1175/jtech-d-15-0097.1
    Hou A Y, Kakar R K, Neeck S, et al. 2014. The global precipitation measurement mission[J]. Bulletin of the American Meteorological Society, 95(5): 701-722. doi: 10.1175/bams-d-13-00164.1
    Huffman G J, Bolvin D T, Nelkin E J, et al. 2020. Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation[EB/OL]. Available online: https://gpm.nasa.gov/sites/default/files/2020-10/IMERG_doc_201006.pdf
    Kim K, Park J, Baik J, et al. 2017. Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia[J]. Atmospheric Research, 187(5): 95-105. doi: 10.1016/j.atmosres.2016.12.007
    Kotsuki S, Terasaki K, Miyoshi T. 2014. GPM/DPR precipitation compared with a 3.5-km-resolution NICAM simulation[J]. Sola, 10: 204-209. doi: 10.2151/sola.2014-043
    Li N, Tang G Q, Zhao P, et al. 2017. Statistical assessment and hydrological utility of the late stmulti-satellite precipitation analysis IMERG in Ganjiang River basin[J]. Atmospheric Research, 183: 212-223. doi: 10.1016/j.atmosres.2016.07.020
    Ma Y Z, Tang G Q, Long D, et al. 2016. Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau[J]. Remote Sensing, 8(7): 1-17. doi: 10.3390/rs8070569
    Mandapaka P V, Lo E Y M. 2020. Evaluation of GPM IMERG rainfall estimates in Singapore and assessing spatial sampling errors in ground reference[J]. Journal of Hydrometeorology, 21(12): 1-47. doi: 10.1175/jhmd-20-0135.1
    Prakash S, Mitra A K, Pai D S, et al. 2016. From TRMM to GPM: How well can heavy rainfall be detected from space?[J]. Advances in Water Resources, 88: 1-7. doi: 10.1016/j.advwatres.2015.11.008
    Siuki S K, Saghafian B, Moazami S. 2017. Comprehensive evaluation of 3-hourly TRMM and half-hourly GPM-IMERG satellite precipitation products[J]. International Journal of Remote Sensing, 38(2): 558-571. doi: 10.1080/01431161.2016.1268735
    Skofronick-Jackson G, Kirschbaum D, Petersen W, et al. 2018. The Global Precipitation Measurement (GPM) mission's scientific achievements and societal contributions: reviewing four years of advanced rain and snow observations[J]. Quarterly Journal of the Royal Meteorological Society, 144(S1): 27-48. doi: 10.1002/qj.3313
    Zhang S J, Wang D H, Qin Z K, et al. 2018. Assessment of the GPM and TRMM precipitation products using the rain gauge network over the Tibetan Plateau[J]. Journal of Meteorological Research, 32(2): 324-336. doi: 10.1007/s13351-018-7067-0

Catalog

    Article views (247) PDF downloads (82) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return