Citation: | CHEN Lianglü, GAO Song. 2023: Analysis of the forecast performance of a rainstorm process based on a convective scale ensemble prediction system. Torrential Rain and Disasters, 42(2): 160-169. DOI: 10.12406/byzh.2022-053 |
In order to understand more comprehensively the ensemble forecast results of rainfall with the convective scale ensemble prediction system and thus to further recommend them to the weather forecasters, this study carried out the analysis of the forecast performance of a rainstorm process with a convective scale ensemble prediction system. The results show that: (1) The forecast difference of each ensemble member increases with precipitation magnitude, and the threat score difference between the best and worst performed ensemble member is more than 0.3. (2) Probability-matched mean forecast performs better than control forecast and ensemble mean forecast for both rainstorm and heavy rainstorm precipitation. Ensemble mean is insensitive to extreme precipitation due to the smoothing effect of ensemble member forecast. Therefore, ensemble mean is not suitable for extreme precipitation forecast. (3) From the minimum forecast to the maximum forecast, with the increase of ensemble percentile, the probability of detection, false alarm rate, and frequency bias gradually increase. The forecast at 70% or 80% ensemble percentile performs the best, and it is better than the ensemble mean and probability-matched mean forecast. (4) For the heavy rainstorm precipitation in the west part of northeastern Chongqing, the long-time ensemble probability forecasts with leading-times up to 60 h all successfully predict certain precipitation probability of rainstorm, and the forecasted precipitation from the corresponding best performed ensemble member is close to the observation.
陈良吕, 吴钲, 高松. 2017. 重庆中尺度集合预报系统预报性能分析[J]. 高原山地气象研究, 37(4): 21-27. doi: 10.3969/j.issn.1674-2184.2017.04.004
Chen L L, Wu Z, Gao S. 2017. Prediction performance analysis of Chongqing Mesoscale Ensemble Prediction System[J]. Plateau and Mountain Meteorology Research, 37(4): 21-27 (in Chinese). doi: 10.3969/j.issn.1674-2184.2017.04.004
|
陈良吕, 吴钲, 高松. 2019. 对流尺度集合预报中模式地形扰动对其预报技巧的影响研究[J]. 暴雨灾害, 38(6): 649-657. doi: 10.3969/j.issn.1004-9045.2019.06.010
Chen L L, Wu Z, Gao S. 2019. Study on the influence of model topography perturbation on prediction skill in a convection-allowing scale ensemble prediction system[J]. Torrential Rain and Disasters, 38(6): 649-657 (in Chinese). doi: 10.3969/j.issn.1004-9045.2019.06.010
|
丑纪范. 2002. 大气科学中的非线性和复杂性[M]. 北京: 气象出版社.
Chou J F. 2002. Nonlinearity and Complexity in Atmospheric Sciences[M]. Beijing: China Meteorological Press (in Chinese)
|
杜钧, 陈静. 2010. 单一值预报向概率预报转变的基础: 谈谈集合预报及其带来的变革[J]. 气象, 36(11): 1-11. doi: 10.7519/j.issn.1000-0526.2010.11.001
Du J, Chen J. 2010. The Corner Stone in Facilitating the Transition from Deterministic to Probabilistic Forecasts-Ensemble Forecasting and Its Impact on Numerical Weather Prediction[J]. Meteorological Monthly, 36(11): 1-11 (in Chinese). doi: 10.7519/j.issn.1000-0526.2010.11.001
|
杜钧, 邓国. 2010. 单一值预报向概率预报转变的价值: 谈谈概率预报的检验和应用[J]. 气象, 36(12): 10-18. doi: 10.7519/j.issn.1000-0526.2010.12.002
Du J, Deng G. 2010. The Utility of the Transition from Deterministic to Probabilistic Weather Forecasts-Verification and Application of Probabilistic Forecasts[J]. Meteor Mon, 36(12): 10-18 (in Chinese). doi: 10.7519/j.issn.1000-0526.2010.12.002
|
杜钧, 李俊. 2014. 集合预报方法在暴雨研究和预报中的应用[J]. 气象科技进展, 4(5): 6-20. doi: 10.3969/j.issn.2095-1973.2014.05.001
Du J, Li J. 2014. Application of Ensemble Methodology to Heavy-Rain Research and Prediction[J]. Advance in Meteorological Science and Technology, 4(5): 6-20 (in Chinese). doi: 10.3969/j.issn.2095-1973.2014.05.001
|
杜钧. 2002. 集合预报的现状和前景[J]. 应用气象学报, 13(1): 16-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX200201001.htm
Du J. 2002. Present situation and prospects of ensemble numerical prediction. Journal of Applied Meteorological Science, 13(1): 16-28 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX200201001.htm
|
胡婧婷, 陈良吕, 夏宇. 2022. 对流尺度集合预报系统中地面要素释用产品的预报性能分析[J]. 暴雨灾害, 41(2): 204-214. doi: 10.3969/j.issn.1004-9045.2022.02.011
Hu J T, Chen L L, Xia Y. 2022. Research on the application of surface elements ensemble forecast products of a convective scale ensemble prediction system[J]. Torrential Rain and Disasters, 41(2): 204-214 (in Chinese). doi: 10.3969/j.issn.1004-9045.2022.02.011
|
林春泽, 祁海霞, 智协飞, 等. 2013. 中国夏季降水多模式集成概率预报研究[J]. 暴雨灾害, 32(4): 354-359. doi: 10.3969/j.issn.1004-9045.2013.04.008
Lin C Z, Qi H X, Zhi X F, et al. 2013. Study on multi-model ensemble probability forecast for summer precipitation in China[J]. Torrential Rain and Disasters, 32(4): 354-359 (in Chinese). doi: 10.3969/j.issn.1004-9045.2013.04.008
|
李俊, 杜钧, 许建玉, 等. 2020. 一次特大暴雨过程高分辨率集合预报试验的检验和评估[J]. 暴雨灾害, 39(2): 176-184. doi: 10.3969/j.issn.1004-9045.2020.02.008
Li J, Du J, Xu J Y, et al. 2020. The assessment and verification of high-resolution ensemble forecast for a heavy rainstorm[J]. Torrential Rain and Disasters, 39(2): 176-184 (in Chinese). doi: 10.3969/j.issn.1004-9045.2020.02.008
|
潘旸, 沈艳, 宇婧婧, 等. 2012. 基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验[J]. 气象学报, 70(6): 1381-1389. doi: 10.11676/qxxb2012.116
Pan Y, Shen Y, Yu J J, et al. 2012. Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique[J]. Acta Meteorologica Sinica, 78(6): 1381-1389 (in Chinese). doi: 10.11676/qxxb2012.116
|
庞玥, 王欢, 夏蘩, 等. 2019. ECMWF集合预报统计量产品在重庆降水预报中的检验与分析[J]. 沙漠与绿洲气象, 13(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201903001.htm
Pang Y, Wang H, Xia F, et al. 2019. Verification and Analysis of ECMWF Ensemble Statistic Products in Chongqing Precipitation Forecast[J]. Desert and Oasis Meteorology, 13(3): 1-7 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201903001.htm
|
彭涛, 李俊, 殷志远, 等. 2010. 基于集合降水预报产品的汛期洪水预报试验[J]. 暴雨灾害, 29(03): 76-80. doi: 10.3969/j.issn.1004-9045.2010.03.005
Peng T, Li J, Yin Z Y, et al. 2010. Preliminary Experiment on Flood Forecast in Flood Season Based on Ensemble Precipitation Prediction Products[J]. Torrential Rain and Disasters, 29(3): 76-80 (in Chinese). doi: 10.3969/j.issn.1004-9045.2010.03.005
|
苏翔, 袁慧玲. 2020. 集合预报统计学后处理技术研究进展[J]. 气象科技进展, 10(2): 30-41. doi: 10.3969/j.issn.2095-1973.2020.02.005
Su X, Yuan H L. 2020. The Research Progress of Ensemble Statistical Postprocessing Methods[J]. Advance in Meteorological Science and Technology, 10(2): 30-41 (in Chinese). doi: 10.3969/j.issn.2095-1973.2020.02.005
|
王德立, 黄辉军, 陈训来, 等. 2020. 深圳对流尺度集合预报系统对台风降水预报的检验评估[J]. 热带气象学报, 36(6): 759-771. doi: 10.16032/j.issn.1004-4965.2020.068
Wang D L, Huan H J, Chen X L. 2020. Verification and Evaluation of Typhoon Precipitation Forecast by Shenzhen Storm-Scale Ensemble Forecast System[J]. Journal of Tropical Meteorology, 36(6): 759-771 (in Chinese). doi: 10.16032/j.issn.1004-4965.2020.068
|
杨瑞雯, 赵琳娜, 巩远发, 等. 2017. 中国东南地区降水的两种集合预报综合偏差订正对比分析[J]. 暴雨灾害, 36(6): 507-517. doi: 10.3969/j.issn.1004-9045.2017.06.003
Yang R W, Zhao L N, Gong Y F, et al. 2017. Comparative analysis of integrated bias correction to ensemble forecast of precipitation in southeast China[J]. TorrentialRainandDisasters, 36(6): 507-517 (inChinese). doi: 10.3969/j.issn.1004-9045.2017.06.003
|
张涵斌, 智协飞, 陈静, 等. 2017. 区域集合预报扰动方法研究进展综述[J]. 大气科学学报, 40(2): 145-157. doi: 10.13878/j.cnki.dqkxxb.20160405001
Zhang H B, Zhi X F, Chen J, et al. 2017. Achievement of perturbation methods for regional ensemble forecast[J]. Transactions of Atmospheric Sciences, 40(2): 145-157 (in Chinese). doi: 10.13878/j.cnki.dqkxxb.20160405001
|
周迪, 陈静, 陈朝平, 等. 2015. 暴雨集合预报-观测概率匹配订正法在四川盆地的应用研究[J]. 暴雨灾害, 34(2): 97-104. doi: 10.3969/j.issn.1004-9045.2015.02.001
Zhou D, Chen J, Chen C P, et al. 2015. Application research on heavy rainfall calibration based on ensemble forecast vs. observed precipitation probability matching method in the Sichuan basin[J]. Torrential Rain and Disasters, 34(2): 97-104 (in Chinese). doi: 10.3969/j.issn.1004-9045.2015.02.001
|
Clark A J, Gallus Jr W A, Xue M, et al. 2009. A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles[J]. Weather and Forecasting, 24(4): 1121-1140. doi: 10.1175/2009WAF2222222.1
|
Clark A J, Gallus Jr W A, Weisman M L. 2010. Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF model simulations and the operational NAM[J]. Weather and Forecasting, 25(5): 1495-1509. doi: 10.1175/2010WAF2222404.1
|
Clark A J. 2017. Generation of Ensemble Mean Precipitation Forecasts from Convection-Allowing Ensembles[J]. Weather and Forecasting, 32(4): 1569-1583. doi: 10.1175/WAF-D-16-0199.1
|
Du J, Mullen S L, Sanders F. 1997. Short-range ensemble forecasting of quantitative precipitation[J]. Monthly Weather Review, 125(10): 2427-2459. doi: 10.1175/1520-0493(1997)125<2427:SREFOQ>2.0.CO;2
|
Huang L, Luo Y. 2017. Evaluation of quantitative precipitation forecasts by TIGGE ensembles for south China during the presummer rainy season[J]. Journal of Geophysical Research-atmospheres, 122(16): 8494-8516. doi: 10.1002/2017JD026512
|
Hamill T M. 1997. Reliability Diagrams for Multicategory Probabilistic Forecasts[J]. Weather and Forecasting, 12(4): 736-741. doi: 10.1175/1520-0434(1997)012<0736:RDFMPF>2.0.CO;2
|
Leith C E. 1974. Theoretical skill of Monte Carlo forecasts[J]. Monthly Weather Review, 102(6): 409-418. doi: 10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
|
Qiao X, Wang S, Schwartz C S, et al. 2020. A Method for Probability Matching Based on the Ensemble Maximum for Quantitative Precipitation Forecasts[J]. MonthlyWeatherReview, 148(8), 3379-3396. doi: 10.1175/MWR-D-20-0003.1
|
Roebber P J. 2009. Visualizing multiple measures of forecast quality[J]. Weather and Forecasting, 24(2): 601-608. doi:10.1175/2008WAF2222 159.1
|
1. |
叶茂,陈良吕,王婧卓. 水平分辨率对CMA-REPS集合预报技巧的影响. 气象. 2025(02): 153-166 .
![]() | |
2. |
计燕霞,孙鑫,张涵斌,赵斐. 内蒙古对流尺度集合预报初始扰动构造的模拟试验研究. 暴雨灾害. 2024(02): 195-203 .
![]() |