Citation: | GUO Yinglian, LI Hongli, WANG Jue, LENG Liang, WANG Minghuan. 2022: Analysis on reproducing ability of diurnal variation characteristics of two atmospheric reanalysis products in the middle reaches of the Yangtze River during the Meiyu period in 2020. Torrential Rain and Disasters, 41(6): 691-700. DOI: 10.12406/byzh.2022-057 |
Using hourly ground observation, wind profile observation and weather radar observation, the diurnal variation characteristics of the reanalysis products of the Local Analysis and Forecasting System (LAPS_LIVE) and the fifth-generation reanalysis product of the European Centre for Medium-Range Weather Forecasts (ERA5) during the Meiyu period in 2020 were validated and analyzed. The results show that the correlation between the diurnal variations of surface fields in LAPS_LIVE and ground truth is higher than that in ERA5 overall. Specifically, LAPS_LIVE is not as good as ERA5 in terms of the diurnal variations of surface temperature and humidity in southwest mountainous area. LAPS_LIVE is obviously better than ERA5 in terms of the diurnal variations of sea level pressure and surface temperature and humidity in the Dabie Mountains area. The diurnal variations of sea level pressure and surface temperature and humidity in the Jianghan Plain have small biases for both reanalysis datasets. The bias of mean surface wind field in LAPS_LIVE is smaller than that in ERA5, but the diurnal variation in LAPS_LIVE is weaker and the wind speed is also lower. The diurnal amplitude and mean speed of surface wind in ERA5 are significantly stronger than the observations. The inertial oscillation characteristics of low-level wind profile in LAPS_LIVE are consistent with the observations. The time evolution and vertical shear of low-level wind field in the morning in LAPS_LIVE is better than that in ERA5, but the low-level jet at night in LAPS_LIVE is worse. ERA5 overestimates the low-level northerly winds and the southwest jet in the morning, but its average low-level wind field is closer to the observations than LAPS_LIVE.
陈涛, 张芳华, 于超, 等. 2020.2020年6-7月长江中下游极端梅雨天气特征分析[J]. 气象, 46(11): 1415-1426 doi: 10.7519/j.issn.1000-0526.2020.11.003
|
陈英英, 唐仁茂, 李德俊, 等. 2013. 利用雷达和卫星资料对一次强对流天气过程的云结构特征分析[J]. 高原气象, 32(4): 1148-1156 https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201304024.htm
|
崔春光, 李红莉, 彭菊香, 等. 2008. LAPS资料在一次鄂东初夏暴雨分析中的应用[J]. 暴雨灾害, 27(4): 307-312 http://www.byzh.org.cn/cn/article/id/1839
|
崔春光, 杜牧云, 肖艳姣, 等. 2021. 强对流天气资料同化和临近预报技术研究[J]. 气象, 47(8): 901-918 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202108001.htm
|
戴泽军, 宇如聪, 李建, 等. 2011. 三套再分析资料的中国夏季降水日变化特征[J]. 气象, 37(1): 21-30 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201101004.htm
|
顾春利, 成巍, 徐幼平, 等. 2018. 雷达资料融合和冷热启动对AREM模式强降水预报的影响分析[J]. 暴雨灾害, 37(6): 574-581 doi: 10.3969/j.issn.1004-9045.2018.06.011
|
郝为锋, 苏晓冰, 王庆安, 等. 2001. 山地边界层急流的观测特性及其成因分析[J]. 气象学报, 12(1): 120-128 doi: 10.3321/j.issn:0577-6619.2001.01.014
|
何立富, 陈涛, 孔期. 2016. 华南暖区暴雨研究进展[J]. 应用气象学报, 27(5): 559-569 https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201605005.htm
|
李红莉, 崔春光, 王志斌, 等. 2009. 中尺度分析系统LAPS应用雷达资料的个例研究[J]. 高原气象, 28(6): 1443-1452 https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200906025.htm
|
李红莉, 张文刚, 付志康, 等. 2017. 一次暴雨过程的LAPS分析场与多源观测对比分析[J]. 暴雨灾害, 36(3): 207-216 doi: 10.3969/j.issn.1004-9045.2017.03.003
|
李红莉, 王志斌. 2017. 华中区域LRUC系统的构建与试验[J]. 气象科学, 37(2): 195-204 https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201702006.htm
|
李炬, 舒文军. 2008. 北京夏季夜间低空急流特征观测分析[J]. 地球物理学报, 52(2): 360-368 doi: 10.3321/j.issn:0001-5733.2008.02.008
|
刘瑞霞, 陈洪滨, 师春香, 等. 2011. 多源观测数据在LAPS三维云量场分析中的应用[J]. 应用气象学报, 22(1): 123-128 doi: 10.3969/j.issn.1001-7313.2011.01.013
|
刘芸芸, 丁一汇. 2020.2020年超强梅雨特征及其成因分析[J]. 气象, 46(11): 1393-1404 doi: 10.7519/j.issn.1000-0526.2020.11.001
|
倪允琪, 周秀骥. 2004. 中国长江中下游梅雨锋暴雨形成机理以及监测与预测理论和方法研究[J]. 气象学报, 62(5): 647-662 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200405011.htm
|
倪允琪, 周秀骥. 2005. 我国长江中下游梅雨锋暴雨研究的进展[J]. 气象, 31(1): 9-12 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200501001.htm
|
任芝花, 赵平, 张强, 等. 2010. 适用于全国自动站小时降水资料的质量控制方法[J]. 气象, 36(7): 123-132 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201007020.htm
|
任芝花, 张志富, 孙超, 等. 2015. 全国自动气象站实时观测资料三级质量控制系统研制[J]. 气象, 41(10): 1268-1277 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201510010.htm
|
阮征, 高祝宇, 李丰, 等. 2017. 风廓线雷达与天气雷达风廓线数据的融合及应用[J]. 气象, 43(10): 1213-1223 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201710005.htm
|
谈哲敏, 方娟, 伍荣生. 2005. Ekman边界层动力学的理论研究[J]. 气象学报, 63(5): 543-555 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200505001.htm
|
唐玉琪, 刘红亚, 岳彩军, 等. 2019. LAPS上海本地化及其在局地对流天气中的应用研究[J]. 气象科学, 39(1): 50-61 https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201901006.htm
|
孙继松. 2005. 北京地区夏季边界层急流的基本特征及形成机理研究[J]. 大气科学, 29(3): 445-452 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK20050300C.htm
|
王明欢, 赖安伟, 周志敏, 等. 2019. 华中区域中尺度业务模式水平风场预报能力的检验评估[J]. 暴雨灾害, 38(4): 373-379 doi: 10.3969/j.issn.1004-9045.2019.04.010
|
肖艳姣, 万玉发, 吴涛, 等. 2015. 基于多普勒天气雷达的两种垂直风廓线反演方法的对比分析[J]. 高原气象, 34(1): 288-297 https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501031.htm
|
许小峰. 2020. 低层垂直大气廓线遥感探测技术进展[J]. 气象科技进展, 10(2): 2-5, 8 https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202002002.htm
|
叶梦姝. 2018. 中国大气再分析资料降水产品在天气和气候中的适用性研究[D]. 兰州: 兰州大学
|
宇如聪, 李建, 陈昊明, 等. 2014. 中国大陆降水日变化研究进展[J]. 气象学报, 72(5): 948-968 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405012.htm
|
张芳华, 陈涛, 张芳, 等. 2020.2020年6-7月长江中下游地区梅汛期强降水的极端性特征[J]. 气象, 46(11): 1405-1414 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202011002.htm
|
Chen G, Sha W, Iwasaki T, et al. 2017. Diurnal cycle of a heavy rainfall corridor over East Asia[J]. Monthly Weather Review, 145(8): 3365-3389
|
Fu P, Zhu K, Zhao K, et al. 2019. Role of the nocturnal low-level jet in the formation of the morning precipitation peak over the Dabie Mountains[J]. Advances in Atmospheric Sciences, 36(1): 15-28
|
Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049
|
Jiang Z, Zhang D, Xia R, et al. 2017. Diurnal variations of pre-summer rainfall over southern China[J]. Journal of Climate 30(2): 755-773
|
Sun J, Zhang F. 2012. Impacts of Mountain-Plains Solenoid on Diurnal Variations of Rainfalls along the Mei-Yu Front over the East China Plains[J]. Monthly Weather Review, 140(2): 379-397
|
Xue M, Luo X, Zhu K, et al. 2018. The Controlling Role of Boundary Layer Inertial Oscillations in Meiyu Frontal Precipitation and Its Diurnal CyclesOverChina[J]. JournalofGeophysicalResearch, 123(10): 5090-5115
|
Zhang Y, Xue M, Zhu K, et al. 2019. What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer low-level jet inertial oscillations[J]. JournalofGeophysicalResearch: Atmospheres, 124(5): 2643-2664
|