Advanced Search
YANG Jiaxi, MENG Chunlei, ZHANG Yizhou, MIAO Shiguang. 2023: Application of Noah-MP in Numerical Forecast in North China: case study. Torrential Rain and Disasters, 42(3): 252-259. DOI: 10.12406/byzh.2022-194
Citation: YANG Jiaxi, MENG Chunlei, ZHANG Yizhou, MIAO Shiguang. 2023: Application of Noah-MP in Numerical Forecast in North China: case study. Torrential Rain and Disasters, 42(3): 252-259. DOI: 10.12406/byzh.2022-194

Application of Noah-MP in Numerical Forecast in North China: case study

More Information
  • Received Date: September 27, 2022
  • Accepted Date: March 01, 2023
  • Available Online: July 07, 2023
  • Noah land surface model is applied in the Rapid-refresh Multi-scale Analysis and Prediction System-Short Term (RMAPS-ST) that is used for the numerical forecast for North China. Noah-MP is a land surface model with multi-physical processes based on Noah. It is worthwhile to investigate how well Noah-MP can be applied in the RMAPS-ST. Therefore, we selected individual case of sunny, cloudy, snowy, and rainy days to conduct numerical experiments and mechanism analysis in North China. The results are shown below. (1) Compared with Noah, Noah-MP has some advantages in the RMAPS-ST. The improvement of wind speed forecast in North China is more significantly than that of air temperature and specific humidity by applying Noah-MP land surface model. (2) The application of Noah-MP has more obvious improvement in the forecast performance of air temperature on sunny days, specific humidity during snowfall, and wind speed on cloudy days. The forecast accuracy of wind speed on cloudy days is increased by about 50.43%. (3) The application of Noah-MP has improved air temperature forecast mainly in the middle and south of Shanxi Province, the middle and south of Hebei Province, and Shandong Province. The improvement of specific humidity forecast is mainly concentrated in the middle and north of Shanxi Province and the north of Hebei Province. The improvement of wind speed forecast is mainly concentrated in the vicinity of mountains. (4) For Beijing, Noah-MP with Chen97 option for surface layer drag coefficient (SFC) and SIMGM option for runoff and groundwater (RUN) has a better effect on the simulation of surface energy fluxes and air temperature, while the options for radiation transfer (RAD), runoff and groundwater (RUN) do not have a significant effect on the forecast results of specific humidity and wind speed.

  • 卜文惠, 陈昊明, 李普曦. 2022. ECMWF模式对2020年夏季江淮流域降水的预报偏差分析[J]. 暴雨灾害, 41(3): 315-323. doi: 10.3969/j.issn.1004-9045.2022.03.008

    Bu W H, Chen H M, Li P X. 2022. Analysis of the deviation of precipitation forecast of ECMWF model over the Yangtze-Huaihe River Valley in summer 2020 [J]. Torrential Rain and Disasters, 41(3): 315-323 (in Chinese). doi: 10.3969/j.issn.1004-9045.2022.03.008
    胡泽超, 钟部卿, 陈伟华, 等. 2020. 陆面模式Noah-MP模拟地表热通量的物理过程不确定性分析[J]. 环境科学学报, 40(6): 2007-2018. doi: 10.13671/j.hjkxxb.2020.0062

    Hu Z C, Zhong B Q, Chen W H, et al. 2020. Uncertainty analysis of physical process on surface heat flux simulation in Noah-MP land surface model [J]. Acta Scientiae Circumstantiae, 40(6): 2007-2018 (in Chinese). doi: 10.13671/j.hjkxxb.2020.0062
    娄小芬, 王丽颖, 罗玲, 等. 2021. ECMWF集合预报在一次台风远距离极端降水分析中的应用[J]. 暴雨灾害, 40(6): 626-636. doi: 10.3969/j.issn.1004-9045.2021.06.007

    Lou X F, Wang L Y, Luo L, et al. 2021. Application of ECMWF ensemble prediction system on an extreme heavy rainfall cause by a remote tropical cyclone [J]. Torrential Rain and Disasters, 40(6): 626-636 (in Chinses). doi: 10.3969/j.issn.1004-9045.2021.06.007
    卢冰, 王薇, 杨扬, 等. 2019. WRF中土壤图及参数表的更新对华北夏季预报的影响研究[J]. 气象学报, 77(6): 1028-1040. doi: 10.11676/qxxb2019.066

    Lu B, Wang W, Yang Y, et al. 2019. Updated soil map and soil hydrologic parameters for WRF and their influences over North China during the warm season [J]. Acta Meteorological Sinica, 77(6): 1028-1040 (in Chinese). doi: 10.11676/qxxb2019.066
    苗世光, 窦军霞, Fei CHEN, 等. 2012. 北京城市地表能量平衡特征观测分析[J]. 中国科学: 地球科学, 42(9): 1-9. doi: 10.1007/s11430-012-4411-6

    Miao S G, Dou J X, Chen F, et al. 2012. Analysis of observations on the urban surface energy balance in Beijing [J]. Scientia Sinica Terrae, 42(9): 1-9 (in Chinese). doi: 10.1007/s11430-012-4411-6
    任军芳, 苏炳凯, 赵鸣. 1999. 标量粗糙度对地气交换的影响[J]. 大气科学, 23(3): 349-358. doi: 10.3878/j.issn.1006-9895.1999.03.11

    Ren J F, Su B K, Zhao M. 1999. Influence of Scalar Roughness Lengths on the Biosphere-Atmosphere Transfer [J]. Chinese Journal of Atmospheric Sciences, 23(3): 349-358 (in Chinese). doi: 10.3878/j.issn.1006-9895.1999.03.11
    孙爽, 郑东海, 刘绍民, 等. 2022. Noah-MP陆面模式在高寒草地生长季水热交换的模拟评估和改进[J]. 中国科学: 地球科学, 52(4): 679-696. doi: 10.1360/SSTe-2021-0047

    Sun S, Zheng D H, Liu S M, et al. 2022. Assessment and improvement of Noah-MP for simulating water and heat exchange over alpine grassland in growing season [J]. Scientia Sinica Terrae, 52(4): 679-696 (in Chinese). doi: 10.1360/SSTe-2021-0047
    王佳丽, 张人禾, 王迎春. 2012. 北京不同区域表面气温的变化特征以及北京市观象台气温的代表性[J]. 气候与环境研究, 17(5): 563-573. doi: 10.3878/j.issn.1006-9585.2012.11024

    Wang J L, Zhang R H, Wang Y C. 2012. Features of the Surface Air Temperature in Different Areas of Beijing and the Representativeness of Beijing Observatory [J]. Climatic and Environmental Research, 17(5): 563-573 (in Chinese). doi: 10.3878/j.issn.1006-9585.2012.11024
    王秋云, 严明良, 包云轩, 等. 2011. 基于不同陆面参数化方案的高温天气数值模拟[J]. 气象科技, 39(5): 537-544. doi: 10.3969/j.issn.1671-6345.2011.05.002

    Wang Q Y, Yan L M, Bao Y X, et al. 2011. Numerical Simulation of a High Temperature Weather Process Based On Different Land Surface Schemes [J]. Meteorological Science and Technology, 39(5): 537-544 (in Chinese). doi: 10.3969/j.issn.1671-6345.2011.05.002
    叶丹, 张述文, 王飞洋, 等. 2017. 基于陆面模式Noah-MP的不同参数化方案在半干旱区的适用性[J]. 大气科学, 41(1): 189-201. doi: 10.3878/j.issn.1006-9895.1604.15226

    Ye D, Zhang S W, Wang F Y, et al. 2017. The Applicability of Different Parameterization Schemes in Semi-Arid Region Based on Noah-MP Land Surface Model [J]. Chinese Journal of Atmospheric Sciences, 41(1): 189-201 (in Chinese). doi: 10.3878/j.issn.1006-9895.1604.15226
    张果, 薛海乐, 徐晶, 等. 2016. 东亚区域陆面过程方案Noah和Noah-MP的比较评估[J]. 气象, 42(9): 1058-1068. doi: 10.7519/j.issn.1000-0526.2016.09.003

    Zhang G, Xue H L, Xu J, et al. 2016. The WRF Performance Comparison Based on Noah and Noah MP Land Surface Processes on East Asia [J]. Meteorological Monthly, 42(9): 1058-1068. doi: 10.7519/j.issn.1000-0526.2016.09.003
    Ball J T, Woodrow I E, Berry J A. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions [M]//Biggins J, Ed. Progress in Photosynthesis Research. Netherlands: Springer, 221-224
    Brutsaert W A. 1982. Evaporation Into the Atmosphere [M]. Netherlands: Springer: 299
    Chang M, Liao W, Wang X, et al. 2020. An optimal ensemble of the Noah-MP land surface model for simulating surface heat fluxes over a typical subtropical forest in South China [J]. Agricultural and Forest Meteorology, 281: 107815. doi: 10.1016/j.agrformet.2019.107815
    Chen F, Dudhia J. 2001. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part Ⅱ: Preliminary Model Validation [J]. Monthly Weather Review, 129(4): 587-604. doi: 10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2
    Chen F, Janjić Z, Mitchell K. 1997. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model [J]. Bound-Layer Meteor, 85: 391-421. doi: 10.1023/A:1000531001463
    Dai Y J, Zeng X B, Dickinson R E, et al. 2003. The Common Land Model [J]. Bulletin of the American Meteorological Society, 84(8): 1013-1023. doi: 10.1175/BAMS-84-8-1013
    Dickinson R E, Shaikh M, Bryant R, et al. 1998. Interactive canopies for a climate model [J]. Journal of Climate, 11: 2823-2836. doi: 10.1175/1520-0442(1998)011<2823:ICFACM>2.0.CO;2
    Gao Y H, Li K, Chen F, et al. 2015. Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau [J]. Journal of Geophysical Research: Atmospheres, 120: 9258-9278. doi: 10.1002/2015JD023404
    He Y Y, Wang K C, Feng F. 2021. Improvement of ERA5 over ERA-Interim in Simulating Surface Incident Solar Radiation throughout China [J]. Journal of Climate, 34(10): 3853-3867. doi: 10.1175/JCLI-D-20-0300.1
    Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Monthly Weather Review, 134(9): 2318-2341. doi: 10.1175/MWR3199.1
    Iacono M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by longlived greenhouse gases: Calculations with the AER radiative transfer models [J]. Journal of Geophysical Research-Atmospheres, 113(D13): D13103. doi: 10.1029/2008jd009944
    Jarvis P G. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field [J]. Philosophical transactions - Royal Society. Biological sciences, 273(927): 593-610
    Kain J S, Fritsch J M. 1993. Convective parameterization for mesoscale models: The Kain-Fritsch scheme [J]. Meteorological Monographs, 165-170. doi: 10.1007/978-1-935704-13-3_16
    Koster R D, Mahanama S P P, Yamada T J, et al. 2010. Contribution of land surface initaliztion to subseasonal forcast skill: First results from multi-model experiment [J]. Geophysical Research Letters, 37: L02402. doi: 10.1029/2009GL041677
    Lelieveld J, Proestos Y, Hadjinicolaou P, et al. 2016. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century [J]. Climatic Change, 137(1-2): 245-260. doi: 10.1007/s10584-016-1665-6
    Li J, Miao C, Zhang G, et al. 2022. Global evaluation of the Noah-MP land surface model and suggestions for selecting parameterization schemes [J]. Journal of Geophysical Research: Atmospheres, 127: e2021JD035753. doi: 10.1029/2021JD035753
    Li J D, Zhang G, Chen F, et al. 2019. Evaluation of land surface subprocesses and their impacts on model performance with global flux data[J]. Journal Of Advances In Modeling Earth Systems, 11: 1329-1348. doi: 10.1029/2018MS001606
    Ma N, Niu G Y, Xia Y L, et al. 2017. A systematic evaluation of Noah-MP in simulating land-atmosphere energy, water, and carbon exchanges over the continental United States [J]. Journal of Geophysical Research: Atmospheres, 122(12): 245-212. doi: 10.1002/2017JD027597
    Niu G Y, Yang Z L. 2004. Effects of vegetation canopy processes on snow surface energy and mass balances [J]. Journal of Geophysical Research, 109: D23111. doi: 10.1029/2004JD004884
    Niu G Y, Yang Z L, Dickinson R E, et al. 2007. Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data [J]. Journal of Geophysical Research, 112: D07103. doi: 10.1029/2006jd007522
    Niu G Y, Yang Z L, Mitchell K E, et al. 2011. The community Noah land surface model with multi-parameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements [J]. Journal of Geophysical Research, 116: D12109. doi: 10.1029/2010jd015140
    Raupach M R, Gillette D A, Leys J F. 1993. The effect of roughness elements on wind erosion threshold [J]. Journal of Geophysical Research Atmospheres, 98(D2): 3023-3029 doi: 10.1029/92JD01922
    Schaake J C, Koren V I, Duan Q Y, et al. 1996. Simple water balance model for estimating runoff at different spatial and temporal scales [J]. Journal of Geophysical Research, 101: 7461-7475 doi: 10.1029/95JD02892
    Thompson G, Field P R, Rasmussen R M, et al. 2008. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part Ⅱ: Implementation of a new snow parameterization [J]. Monthly Weather Review, 136(12): 5095-5115. doi: 10.1175/2008MWR2387.1
    Wilks D S. 2006. Statistical Methods in the Atmospheric Science [M]. Academic Press: 627
    Wilson K B, Baldocchi D D, Aubinet M, et al. 2002. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites [J]. Water Resources Research, 38: 1294. doi: 10.1029/2001wr000989

Catalog

    Article views (184) PDF downloads (44) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return