Citation: | LU Chuhan, HUANG Dingan, QIN Yujing, LI Yonghua, XIANG Bo. 2024: Characteristics and cause analysis of summer precipitation conversion rate in eastern Southwest China. Torrential Rain and Disasters, 43(5): 499-508. DOI: 10.12406/byzh.2023-010 |
Using CN05.1 and ECMWF Reanalysis v5 (ERA5) data, the characteristics of precipitation, water vapor content and precipitation conversion rate in eastern Southwest China (ESWC) during the summer of 1961-2020 were analyzed, and the influence of terrain distribution on the spatial distribution difference of precipitation conversion rate was preliminarily explored by means of synoptic analysis. Finally, the mesoscale numerical Weather Research and Forecasting Model (WRF4.0) was used to design terrain sensitivity tests to verify the effect of terrain on summer precipitation in the ESWC. The results are as follow. (1) In the summer of 1961-2020, the precipitation in the ESWC shows the characteristics of more precipitation in the east and less precipitation in the west, but there are two large value areas of water vapor content in the southeast and northwest of ESWC. The precipitation conversion rate in the large value area of water vapor is low, and the distribution of the strong precipitation area and the large value area of water vapor content are significantly different. By analyzing the situation of heavy precipitation areas in conjunction with horizontal wind fields and vertical velocity fields, it is found that topographic distribution is an important factor leading to this difference. (2) WRF model can well reflect the characteristics of summer precipitation in the ESWC. The terrain sensitivity test shows that the southwest to northeast mountain terrain distribution consisting of Dalou Mountain, Fangdou Mountain and Daba Mountain has a significant impact on the intensity of precipitation, and the decrease of terrain height will lead to a significant decrease of precipitation in the southeastern part of the region. (3) In particular, after reducing the topographic height of the region by half and to 0, respectively, the precipitation in the southeast of the region will decrease by 9.89% and 19.90% respectively on the monthly time scale. The change of topographic height will also cause the change of vertical velocity, horizontal wind field, water vapor transport and water vapor convergence, which will lead to the change of precipitation intensity. When the terrain height decreases, the upward motion and the southwest wind will weaken obviously, and the intensity of water vapor transport and water vapor convergence will decrease, which is not conducive to the formation of precipitation.
蔡芗宁, 马杰, 刘晓波, 等. 2024. 气候变化对延伸期预报的影响[J]. 沙漠与绿洲气象, 18(1): 12-19. doi: 10.12057/j.issn.1002-0799.2024.01.002
Cai X N, Ma J, Liu X B, et al. 2024. Impact of climate change on extended range forecast[J]. Desert and Oasis Meteorology, 18(1): 12-19 (in Chinese). doi: 10.12057/j.issn.1002-0799.2024.01.002
|
何博翰, 孙建奇, 于恩涛, 等. 2020. 大兴安岭和长白山地形影响东北夏季降水的数值模拟研究[J]. 气候与环境研究, 25(3): 268-280. doi: 10.3878/j.issn.1006-9585.2020.19189
He B H, Sun J Q, Yu E T, et al. 2020. Simulation study on the influence of the Great Khingan Strip and Changbai Mountain on summer rainfall in Northeast China[J]. Climatic and Environmental Research, 25(3): 268-280 (in Chinese). doi: 10.3878/j.issn.1006-9585.2020.19189
|
李永华, 徐海明, 高阳华, 等. 2010. 西南地区东部夏季旱涝的水汽输送特征[J]. 气象学报, 68(6): 932-943. doi: 10.11676/qxxb2010.088
Li Y H, Xu H M, Gao Y H, et al. 2010. The characteristics of moisture transport associated with drought/flood in summer over the east of the southwestern China[J]. Atca Meteorologica Sinica, 68(6): 932-943 (in Chinese). doi: 10.11676/qxxb2010.088
|
李永华, 青吉铭, 李强, 等. 2013. 西南地区东部夏季旱涝的西太平洋副高特征[J]. 西南大学学报: 自然科学版, 35(3): 106-116. doi: 10.13718/j.cnki.xdzk.2013.03.012
Li Y H, Qing J M, Li Q, et al. 2013. Features of Western Pacific Subtropical High (WPSH) associated with drought/flood in summer over the Eastern Part of Southwest China[J]. Journal of Southwest University (Natural Science Edition), 35(3): 106-116 (in Chinese). doi: 10.13718/j.cnki.xdzk.2013.03.012
|
刘洋, 钱贞成, 朱宇宁, 等. 2015. "8·31" 云阳特大暴雨地形动力作用数值研究[J]. 高原山地气象研究, 35(3): 9-17. doi: 10.3969/j.issn.1674.2184·2015.03.002
Liu Y, Qian Z C, Zhu Y N, et al. 2015. Numerical study of the dynamic effect of terrain on"8. 31" extreme torrential rain in Yunyang[J]. Plateau and Mountain Meteorology Research, 35(3): 9-17 (in Chinese). doi: 10.3969/j.issn.1674.2184·2015.03.002
|
康岚, 沈桐立, 蔡新玲, 等. 2004. 青藏高原东侧一次典型暴雨过程的数值模拟试验[J]. 高原气象, 23(S1): 37-45. doi: 10.3321/j.issn:1000-0534.2004.z1.007
Kang L, Shen T L, Cai X L, et al. 2004. Numerical simulation experiment about a typical heavy rain process on the east side of Qinghai -Xizang Plateau[J]. Plateau Meteorology, 23(S1): 37-45 (in Chinese). doi: 10.3321/j.issn:1000-0534.2004.z1.007
|
马思敏, 穆建华, 舒志亮, 等. 2022. 六盘山区一次典型暴雨过程的地形敏感性模拟试验[J]. 干旱气象, 40(3): 457-468. doi: 10.11755/j.issn.1006-7639(2022)-03-0457
Ma S M, Mu J H, Shu Z L, et al. 2022. Topography sensitivity simulation test of a typical rainstorm process in Liupan Mountain region[J]. Journal of Arid Meteorology, 40(3): 457-468 (in Chinese). doi: 10.11755/j.issn.1006-7639(2022)-03-0457
|
聂童, 高玉芳, 彭涛, 等. 2023. WRF-Hydro模式结合不同降水产品模拟清江流域径流的效果分析[J]. 暴雨灾害, 42(4): 395-405. doi: 10.12406/byzh.2022-205
Nie T, Gao Y F, Peng T, et al. 2023. Effect analysis of WRF-Hydro model combined with different precipitation products to simulate runoff in the Qingjiang River Basin[J]. Torrential Rain and Disasters, 42(4): 395-405 (in Chinese). doi: 10.12406/byzh.2022-205
|
王维佳, 陈碧辉. 2010. 四川上空大气可降水量时空分布特征[J]. 高原山地气象研究, 30(3): 52-57. doi: 10.3969/j.issn.1674-2184·2010.03.009
Wang W J, Chen B H. 2010. Spatial-Temporal characteristics of precipitable water over Sichuan[J]. Plateau and Mountain Meteorology Research, 30(3): 52-57 (in Chinese). doi: 10.3969/j.issn.1674-2184·2010.03.009
|
吴胜刚, 刘屹岷, 邹晓蕾, 等. 2016. WRF模式对青藏高原南坡夏季降水的模拟分析[J]. 气象学报, 74(5): 744-756. doi: 10.11676/qxxb2016.048
Wu S G, Liu Y M, Zou X L, et al. 2016. The simulation analysis of the precipitation over the southern slopes of the Tibetan Plateau based on WRF model[J]. Atca Meteorologica Sinica, 74(5): 744-756 (in Chinese). doi: 10.11676/qxxb2016.048
|
吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 56(4): 1102-1111. doi: 10.6038/cjg20130406
Wu J, Gao X J. 2013. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 56(4): 1102-1111 (in Chinese). doi: 10.6038/cjg20130406
|
吴志鹏, 李跃清, 李晓岚, 等. 2021. WRF模式边界层参数化方案对川渝盆地西南涡降水模拟的影响[J]. 大气科学, 45(1): 58-72. doi: 10.3878/j.issn.1006-9895.2005.19171
Wu Z P, Li Y Q, Li X L, et al. 2021. Influence of different planetary boundary layer parameterization schemes on the simulation of precipitation caused by Southwest China vortex in Sichuan Basin based on the WRF model[J]. Chinese Journal of Atmospheric Sciences, 45(1): 58-72 (in Chinese). doi: 10.3878/j.issn.1006-9895.2005.19171
|
袁有林, 左洪超, 董龙翔, 等. 2015. 地形和水汽对"7.13" 陕西暴雨影响的数值试验[J]. 干旱气象, 33(2): 291-302. doi: 10.11755/j.issn.1006-7639(2015)-02-0291
Yuan Y L, Zuo H C, Dong L X, et al. 2015. Numerical simulation of the effect of elevation and water vapor on"7.13"rainstorm in shaanxi province[J]. Journal of Arid Meteorology, 33(2): 291-302 (in Chinese). doi: 10.11755/j.issn.1006-7639(2015)-02-0291
|
于晓晶, 赵勇. 2016. 地形对天山夏季降水影响的模拟[J]. 中国沙漠, 36(4): 1133-1143. doi: 10.7522/j.issn.1000-694X.2015.00116
Yu X J, Zhao Y. 2016. Simulation of orographic effects on summer rain in the Tianshan Mountains[J]. Journal of Desert Research, 36(4): 1133-1143 (in Chinese). doi: 10.7522/j.issn.1000-694X.2015.00116
|
翟盘茂, 周琴芳. 1997. 中国大气水分气候变化研究[J]. 应用气象学报, 8(3): 342-351.
Zhai P M, Zhou Q F. 1997. A study of climate changes of atmospheric water vapour in China[J]. Quarterly Journal of Applied Meteorology, 8(3): 342-351 (in Chinese). doi: CNKI:SUN:YYQX.0.1997-03-010
|
邹进上, 刘惠兰. 1981. 我国平均水汽含量分布的基本特点及其控制因子[J]. 地理学报, 36(4): 377-391. doi: 10.11821/xb198104004
Zou J S, Liu H L. 1981. The basic features of distribution of water vapour content and their controlling factors in China[J]. Atca Geographica Sinica, 36(4): 377-391 (in Chinese). doi: 10.11821/xb198104004
|
周顺武, 吴萍, 王传辉, 等. 2011. 青藏高原夏季上空水汽含量演变特征及其与降水的关系[J]. 地理学报, 66(11): 1466-1478. doi: 10.11821/xb201111003
Zhou S W, Wu P, Wang C H, et al. 2011. Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau[J]. Atca Geographica Sinica, 66(11): 1466-1478 (in Chinese). doi: 10.11821/xb201111003
|
张杰, 李栋梁, 王文. 2008. 夏季风期间青藏高原地形对降水的影响[J]. 地理科学, 28(2): 235-240. doi: 10.3969/j.issn.1000-0690.2008.02.019
Zhang J, Li D L, Wang W. 2008. Influence of terrain on precipitation in Qinghai-Tibet Plateau during summer monsoon[J]. Atca Geographica Sinica, 28(2): 235-240 (in Chinese). doi: 10.3969/j.issn.1000-0690.2008.02.019
|
Asadieh B, Krakauer N Y. 2014. Global trends in extreme precipitation: climate models versus observations[J]. Hydrology and Earth System Sciences, 19: 877-891. doi: 10.5194/hess-19-877-2015
|
Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146: 1999-2049. doi: 10.1002/qj.3803
|
Shi Z, Sha Y, Liu X, et al. 2019. Effect of marginal topography around the Tibetan Plateau on the evolution of central Asian arid climate: Yunnan-Guizhou and Mongolian Plateaux as examples[J]. Climate Dynamics, 53(7): 4433-4445. doi: 10.1007/s00382-019-04796-z
|
Skamarock C, Klemp B, Dudhia J, et al. 2019. A description of the advanced research WRF Model Version 4[C]. doi: 10.5065/1DFH-6P97
|
Simmonds I, Bi D, Hope P. 1999. Atmospheric water vapor flux and its association with rainfall over China in summer[J]. Journal of Climate, 12(5): 1353-1367. doi: 10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2
|