Advanced Search
YU Lefu, YAO Dan, XIAO Yanjiao, DONG YuanChang. 2023: A reflectivity factor correction algorithm for X-band phased array radars. Torrential Rain and Disasters, 42(4): 446-454. DOI: 10.12406/byzh.2023-025
Citation: YU Lefu, YAO Dan, XIAO Yanjiao, DONG YuanChang. 2023: A reflectivity factor correction algorithm for X-band phased array radars. Torrential Rain and Disasters, 42(4): 446-454. DOI: 10.12406/byzh.2023-025

A reflectivity factor correction algorithm for X-band phased array radars

More Information
  • Received Date: February 15, 2023
  • Accepted Date: April 15, 2023
  • Available Online: September 03, 2023
  • The difference between reflectivity factors observed by different radars observing the same target affects the performance of the multi-radar mosaic. For X-band radars without beam blocking, this difference is mainly caused by calibration deviation and signal attenuation due to rain and wet radome. To correct these errors, a new correction algorithm for network phased array weather radars is designed. In this new algorithm, we first regarded the attenuation due to water film on the radome as part of the calibration deviation, and used the network attenuation correction algorithm to make an initial attenuation correction. Then, an observation deviation function of the radar network is designed, which used the gradient descent method to solve the calibration deviation issue between different radars. Finally, a secondary attenuation correction, which used the network attenuation correction algorithm, is applied to the original reflectivity factor after calibration deviation correction. In this study, a network consisting of seven X-band phased array weather radars in the Foshan city of Guangdong province is used to verify the new correction algorithm. For a rainfall event associated with cold air, a correlation coefficient of 0.53 between the reflectivity factor corrected with the traditional path-integrated attenuation (PIA) algorithm and the reflectivity factor observed by an S-band weather radar in Guangzhou was obtained, with a root mean square error of 9.0 dB. While those between the new correction algorithm and the S-band radar are 0.64 and 8.4 dB, respectively, with both being better than PIA. A similar performance was also achieved in a typhoon outer rain-band rainfall event analysis.

  • 楚志刚, 许丹, 王振会, 等. 2018. 基于TRMM/PR的长江下游地基雷达一致性订正[J]. 应用气象学报, 29(3): 296-306. doi: 10.11898/1001-7313.20180304

    Chu Z G, Xu D, Wang Z H, et al. 2018. Consistent correction to ground-based radars in the lower reachers of the Yangtze based on TRMM/PR observations [J]. Journal of Applied Meteorological Science, 29(3): 296-306 (in Chinese). doi: 10.11898/1001-7313.20180304
    韩静, 楚志刚, 王振会, 等. 2017. 苏南三部地基雷达反射率因子一致性和偏差订正个例研究[J]. 高原气象, 36(6): 1665-1673. doi: 10.7522/j.issn.1000-0534.2016.00137

    Han J, Chu Z G, Wang Z H, et al. 2017. A Study on the consistency and deviation correction of the radar reflectivity factor of three ground-based radars in southern jiangsu [J]. Plateau Meteorology, 36(6): 1665-1673 (in Chinese). doi: 10.7522/j.issn.1000-0534.2016.00137
    李山山, 王晓芳, 李国平, 等. 2023. 短时强降水和持续性强降水的雨滴谱特征对比[J]. 暴雨灾害, 42(1): 1-12. doi: 10.12406/byzh.2022-119

    Li S S, Wang X F, Li G P, et al. 2023. Comparative analysis on characteristics of raindrop spectrum of short-term and persistent heavy rain [J]. Torrential Rain and Disasters, 42(1): 1-12 (in Chinese). doi: 10.12406/byzh.2022-119
    刘娟. 2015. 双极化天气雷达CAPPI产品算法研究[J]. 气象水文海洋仪器, 32(4): 10-13. doi: 10.3969/j.issn.1006-009X.2015.04.003

    Liu J. 2015. Algorithm research on CAPPI products of dual-polarization weather radar [J]. Meteorological, Hydrological and Marine Instruments, 32(4): 10-13 (in Chinese). doi: 10.3969/j.issn.1006-009X.2015.04.003
    小平信彦, 张菊生. 1981. 覆盖水膜的天线罩引起的雷达波衰减[J]. 气象科技, (S2): 57-58. doi: 10.19517/j.1671-6345.1981.s2.014

    Kohira N, Zhang J S. 1981. Radar signal attenuation caused by antenna housing covered with water film [J]. Meteorological Science and Technology, (S2): 57-58 (in Chinese). doi: 10.19517/j.1671-6345.1981.s2.014
    肖柳斯, 胡东明, 陈生, 等. 2021. X波段双偏振相控阵雷达的衰减订正算法研究[J]. 气象, 47(6): 703-716. doi: 10.7519/j.issn.1000-0526.2021.06.006

    Xiao L S, Hu D M, Chen S, et al. 2021. Study on attenuation correction algorithm of x-band dual-polarization phased array radar [J]. Meteorological Monthly, 47(6): 703-716(in Chinese). doi: 10.7519/j.issn.1000-0526.2021.06.006
    肖艳姣, 万玉发, 王珏, 等. 2011. 改进的C波段天气雷达定量降水估计算法研究[J]. 暴雨灾害, 30(4): 321-327. http://www.byzh.org.cn/cn/article/id/2101

    Xiao Y J, Wang Y F, Wang Y, et al. 2011. Study of a improved modified C-Band radar quantitative precipitation estimation algorithm [J]. Torrential Rain and Disasters, 30(4): 321-327 (in Chinese). doi: 1004-9045(2011)04-0321-07
    张培昌, 王振会. 2001. 天气雷达回波衰减订正算法的研究(Ⅰ): 理论分析[J]. 高原气象, 20(1): 1-5.

    Zhang P C, Wang Z H. 2001. A Study on algorithm to make attenuation correction to radar observations of radar reflectivity factor (Ⅰ): Theoretical Analysis [J]. Plateau Meterology, 20(1): 1-5 (in Chinese). doi: 1000-0534(2001)02-0115-06
    曾震瑜, 刘黎平, 郑佳锋, 等. 2021. 星载雷达DPR与地基雷达CR的匹配对比及系统偏差初探[J]. 暴雨灾害, 40(3): 287-296. doi: 10.3969/j.issn.1004-9045.2021.03.007

    Zeng Z Y, Liu L P, Zheng J F, et al. 2021. Matching comparison between Satellite radar DPR and ground-based radar CR and preliminary study of systematic error [J]. Torrential Rain and Disasters, 40(3): 287-296 (in Chinese). doi: 10.3969/j.issn.1004-9045.2021.03.007
    朱艺青, 王振会, 李南, 等. 2016. 南京雷达数据的一致性分析和订正[J]. 气象学报, 74(2): 298-308. doi: 10.11676/qxxb2016.022

    Zhu Y Q, Wang Z H, Li N, et al. 2016. Consistency analysis and correction for observations from the radar at Nanjing [J]. Acta Meteorologica Sinica, 74(2): 298-308 (in Chinese). doi: 10.11676/qxxb2016.022
    赵恒轩, 陈钟荣, 周枫. 2003. 天气雷达反射率因子的实时衰减订正[J]. 高原气象, 22(4): 365-370. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200304008.htm
    Zhao H X, Chen Z R, Zhou F. 2023. Real-time Attenuation correction for weather radar reflectivity factor [J]. Plateau Meterology, 22(4): 365-370 (in Chinese). doi: 10.3321/j.issn:1000-0534.2003.04.008
    Chandrasekar V. 2008. Retrieval of Reflectivity in a networked radar environment [J]. Journal of Atmospheric & Oceanic Technology, 25(10): 1755-1767. doi: 10.1109/IGARSS.2004.1369056
    Delrieu G S, Caouda L, Creutin J D. 1997. Feasibility of using mountain return for the correction of ground-based x-band weather radar data [J]. Journal of Atmospheric & Oceanic Technology, 14(3): 368-385. doi: 10.1175/1520-0426(1997)014<0368:foumrf>2.0.co;2
    Hitschfeld W, Bordan J. 1954. Errors inherent in the radar measurement of rainfall at attenuating wavelengths [J]. Journal of Meteorology, 11(1): 58-67. doi: 10.1175/1520-0469(1954)0112.0.CO;2
    Jacobi S, Heistermann M. 2016. Benchmarking attenuation correction procedures for six years of single-polarized C-band weather radar observations in South-West Germany [J]. Geomatics, Natural Hazards and Risk, 7(6): 1785-1799. doi: 10.1080/19475705.2016.1155080
    Testud J, Amayenc P. 1988. Stereoradar meteorology: a promising technique for observation of precipitation from a mobile platform [J]. Journal of Atmospheric & Oceanic Technology, 6(1): 89-108. doi: 10.1175/1520-0426(1989)006<0089:SMAPTF>2.0.CO;2
    Testud J, Amayenc P, Marzoug M. 2009. Rainfall-rate retrieval from a spaceborne radar: comparison between single-frequency, Dual-Frequency, and Dual-Beam Techniques [J]. Journal of Atmospheric and Oceanic Technology, 9(5): 599-623. doi: 10.1175/1520-0426(1992)0092.0.CO;2

Catalog

    Article views (192) PDF downloads (71) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return