Citation: | JI Yanxia, SUN Xin, ZHANG Hanbin, ZHAO Fei. 2024: Study on the simulation experiment about initial condition perturbation construction for convection-allowing ensemble prediction system in Inner Mongolia. Torrential Rain and Disasters, 43(2): 195-203. DOI: 10.12406/byzh.2023-065 |
Convection-allowing ensemble prediction (CAEP) is an important approach to improve the capability of strong convective weather prediction, and how to construct reasonable initial disturbance is one of the key issues of CAEP. In this paper, the experiments of the per⁃ turbed-observation (PO) method in the CAEP system in the Inner Mongolia region were carried out and evaluated by comparing them with the downscaling (DOWN) method. The performance of the PO method in the CAEP system was then analyzed, which will provide a technical ref⁃ erence for the construction of the CAEP system in Inner Mongolia. The results are as follows. (1) The initial perturbation constructed by the PO method can effectively include the observations in the Inner Mongolia region, which can reduce the uncertainty of the background field and the perturbation has sufficient growth capacity. (2) Compared with the DOWN method, the PO method can significantly reduce the short-term forecast error of CAEP. The root mean square error (RMSE) of upper-level elements is reduced by 4% ~43%, and the RMSE of ground surface elements is reduced by 3% ~9%, suggesting a slightly decreased ensemble spread. The continuous ranked probability score (CRPS) of upper-level elements can be reduced by up to 53% and the CRPS of ground surface elements is reduced by an average of 6%, which generally indicates an improvement in the quality of convective scale ensemble forecasts. (3) The PO method can also improve the capability of short-term precipitation forecasts. The TS score for precipitation levels of 0.1 mm, 4 mm, and 13 mm increased by 0.015, 0.003, and 0.0015, re⁃ spectively. Furthermore, the case study shows that the PO method is more accurate in predicting the precipitation areas and intensity levels.
蔡瑾婕. 2018. 风暴尺度集合预报中ETKF初始扰动方法研究[D]. 南京: 南京信息工程大学.
Cai J J. 2018. Study on ETKF initial condition perturbation in storm-allowing ensemble forecast[D]. Nanjing: Nanjing University of Information Science & Technology (in Chinese)
|
陈良吕, 高松. 2023. 基于对流尺度集合预报方法对一次暴雨过程预报的分析[J]. 暴雨灾害, 42(2): 160-169. doi: 10.12406/byzh.2022-05
Chen L L, Gao S. 2023. Analysis of the forecast performance of a rainstorm process based on a convective scale ensemble prediction system [J]. Torrential Rain and Disasters, 42(2): 160-169 (in Chinese). doi: 10.12406/byzh.2022-05
|
陈良吕, 吴钲, 高松. 2017. 重庆中尺度集合预报系统预报性能分析[J]. 高原山地气象研究, 37(4): 21-27. doi: 10.3969/j.issn.1674-2184.2017.04.004
Chen L L, Wu Z, Gao S. 2017. Prediction performance analysis of Chongqing mesoscale ensemble prediction system [J]. Plateau and Mountain Meteorology Research, 37(4): 21-27 (in Chinese). doi: 10.3969/j.issn.1674-2184.2017.04.004
|
杜钧. 2002. 集合预报的现状和前景[J]. 应用气象学报, 13(1): 16-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX200201001.htm
Du J. 2002. Present situation and prospects of ensemble numerical prediction [J]. Journal of Applied Meteorological Science, 13(1): 16-28 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX200201001.htm
|
胡婧婷, 陈良吕, 夏宇. 2022. 对流尺度集合预报系统中地面要素释用产品的预报性能分析[J]. 暴雨灾害, 41(2): 204-214. doi: 10.3969/j.issn.1004-9045.2022.02.011
Hu J T, Chen L L, Xia Y. 2022. Research on the application of surface elements ensemble forecast products of a convective scale ensemble prediction system[J]. Torrential Rain and Disasters, 41(2): 204-214 (in Chinese). doi: 10.3969/j.issn.1004-9045.2022.02.011
|
黄晓璐, 荀学义, 赵斐. 2017. 内蒙古强对流天气时空演变特征分析[J]. 暴雨灾害, 36(3): 287-291. doi: 10.3969/j.issn.1004-9045.2017.03.013
Huang X L, Xun X Y, Zhao F. 2017. Spatial and temporal distribution characteristics of severe convection weather in Inner Mongolia [J]. Torrential Rain and Disasters, 36(3): 287-291 (in Chinese). doi: 10.3969/j.issn.1004-9045.2017.03.013
|
江崟, 陈训来, 朱江山, 等. 2019. 深圳对流尺度集合预报系统在华南暴雨中的应用研究[J]. 气象科技进展, 9(3): 124-131. doi: 10.3969/j.issn.2095-1973.2019.03.017
Jiang Y, Chen X L, Zhu J S, et al. 2019. Application of Shenzhen storm-scale ensemble forecast system in heavy rainfall of South China [J]. Advances in Meteorological Science and Technology, 9(3): 124-131(inChinese). doi: 10.3969/j.issn.2095-1973.2019.03.017
|
李俊, 杜钧, 许建玉, 等. 2020. 一次特大暴雨过程高分辨率集合预报试验的检验和评估[J]. 暴雨灾害, 39(2): 176-184. doi: 10.3969/j.issn.1004-9045.2020.02.008
Li J, Du J, Xu J Y, et al. 2020. The assessment and verification of high-resolution ensemble forecast for a heavy rainstorm [J]. Torrential Rain and Disasters, 39(2): 176-184 (in Chinese). doi: 10.3969/j.issn.1004-9045.2020.02.008
|
李坤, 陈超辉, 何宏让, 等. 2021. 新型局地增长模培育法对两次飑线个例的对流尺度集合预报试验[J]. 大气科学学报, 44(4): 518-528. doi: 10.13878/j.cnki.dqkxxb.20200420001
Li K, Chen C H, He H R, et al. 2021. Convection-allowing ensemble forecasts of two squall line cases using a novel local breeding growth mode method [J]. Transactions of Atmospheric Sciences, 44(4): 518-528 (in Chinese). doi: 10.13878/j.cnki.dqkxxb.20200420001
|
李湘. 2020. 增长模培育法在对流尺度集合预报中的初步应用与改进[D]. 长沙: 国防科技大学.
Li X. 2020. The initial application and advancement of the breeding growth mode method in the convective-permitting ensemble forecast [D]. Changsha: National University of Defense Technology (in Chinese)
|
马申佳, 陈超辉, 何宏让, 等. 2018. 基于BGM的对流尺度集合预报试验及其检验[J]. 高原气象, 2018, 37(2): 495-504. doi: 10.7522/j.issn.1000-0534.2017.00073
Ma S J, Chen C H, He H R, et al. 2018. Experiment and verification of the convective-scale ensemble forecast based on BGM [J]. Plateau Meteorology, 37(2): 495-504 (in Chinese). doi: 10.7522/j.issn.1000-0534.2017.00073
|
马旭林, 计燕霞, 周勃旸, 等. 2018. GRAPES区域集合预报尺度混合初始扰动构造的新方案[J]. 大气科学学报, 41(2): 248-257. doi: 10.13878/j.cnki.dqkxxb.20160104001
Ma X L, Ji Y X, Zhou B Y, et al. 2018. A new scheme of blending initial perturbation of the GRAPES regional ensemble prediction system [J]. Transactions of Atmospheric Sciences, 41(2): 248-257(inChinese). doi: 10.13878/j.cnki.dqkxxb.20160104001
|
马雅楠. 2022. 对流尺度集合预报初值误差多尺度演变过程及初值扰动方法研究[D]. 北京: 中国气象科学研究院.
Ma Y N. 2022. Research on multiscale evolution characteristics and method of initial perturbation in convection-permitting ensemble prediction [D]. Beijing: Chinese Academy of Meteorological Sciences (in Chinese). doi: 10.3878/j.issn.1006-9895.2202.21242
|
王德立, 黄辉军, 陈训来, 等. 2020. 深圳对流尺度集合预报系统对台风降水预报的检验评估[J]. 热带气象学报, 36(6): 759-771. doi: 10.16032/j.issn.1004-4965.2020.068
Wang D L, Huang H J, Chen X L, et al. 2020. Verification and evaluation of typhoon precipitation forecast by Shenzhen storm-scale ensemble forecast system [J]. Journal of Tropical Meteorology, 36(6): 759-771 (in Chinese). doi: 10.16032/j.issn.1004-4965.2020.068
|
王璐, 沈学顺. 2019. 对流尺度集合预报与模式不确定性研究进展[J]. 气象, 45(8): 1158-1168. doi: 10.7519/j.issn.1000-0526.2019.08.012
Wang L, Shen X S. 2019. Review on the representation of model uncertainty in convection-allowing ensemble prediction system [J]. Meteorological Monthly, 45(8): 1158-1168 (in Chinese). doi: 10.7519/j.issn.1000-0526.2019.08.012
|
谢坤, 王德立, 陈训来. 2016. 雷暴尺度集合预报对华南前汛期暴雨降水预报的检验[C]. 西安: 中国气象学会年会.
Xie K, Wang D L, Chen X L. 2016. Verification of heavy rainfall of south China forecast by Shenzhen storm-scale ensemble forecast system [C]. Xian: Annual Meeting of Chinese Meteorological Society (in Chinese).
|
张涵斌, 计燕霞, 陈敏, 等. 2022. 基于观测扰动的集合预报EDA初值扰动方法研究[J]. 气象, 48(4): 406-417. doi: 10.7519/j.issn.1000-0526.2021.102301
Zhang H B, Ji Y X, Chen M, et al. 2022. Study on the EDA initial condition perturbation method for ensemble prediction system based on observation perturbation [J]. Meteorological Monthly, 48(4): 406-417(in Chinese). doi: 10.7519/j.issn.1000-0526.2021.102301
|
朱科锋, 张晨悦, 薛明, 等. 2022. 对流可分辨尺度集合预报对河南"21.7"极端降水事件可预报性研究[J]. 中国科学: 地球科学, 52(10): 1905-1928. doi: 10.1007/s11430-022-9961-7
Zhu K F, Zhang C Y, Xue M, et al. 2022. Predictability and skill of convection-permitting ensemble forecast systems in predicting the record-breaking"21·7"extreme rainfall event in Henan Province, China [J]. Science China Earth Sciences, 52(10): 1905-1928 (in Chinese). doi: 10.1007/s11430-022-9961-7
|
庄潇然, 闵锦忠, 王世璋, 等. 2017. 风暴尺度集合预报中的混合初始扰动方法及其在北京2012年"7.21"暴雨预报中的应用[J]. 大气科学, 41(1): 30-42. doi: 10.3878/j.issn.1006-9895.1605.15233
Zhuang X R, Min J Z, Wang S Z, et al. 2017. A blending method for storm-scale ensemble forecast and its application to Beijing extreme precipitation event on July 21, 2012 [J]. Chinese Journal of Atmosphere Sciences, 41(1): 30-42 (in Chinese). doi: 10.3878/j.issn.1006-9895.1605.15233
|
Buizza R, Houtekamer P L, Toth Z, et al. 2005. A comparision of the ECMWF, MCS, and NCEP global ensemble prediction systems [J]. Monthly Weather Review, 133(5): 1076-1097. doi: 10.1175/MWR2905.1
|
Buizza R, Leutbecher M, Isaksen L. 2008. Potential use of an ensemble of analyses in the ECMWF ensemble prediction system [J]. Quarterly Journal of The Royal Meteorological Society, 134(637): 2051-2066. doi: 10.1002/qj.346
|
Hagelin S, Son J, Swinbank R, et al. 2017. The Met Office convective-scale ensemble, MOGREPS-UK [J]. Quarterly Journal of The Royal Meteorological Society, 143(708): 2846-2861. doi: 10.1002/qj.3135
|
Houtekamer P L, Lefaivre L, Derome J, et al. 1996. A system simulation approach to ensemble prediction [J]. Monthly Weather Review, 124(6): 1225-1242. doi: 10.1175/1520-0493(1996)1242.0.CO;2
|
Johnson A, Wang X G, Xue M, et al. 2014. Multiscale characteristics and evolution of perturbations for warm season convection-allowing precipitation forecastes: Dependence on background flow and method of perturbation [J]. Monthly Weather Review, 142(3): 1053-1073. doi: 10.1175/MWR-D-13-00204.1
|
Kong F Y, Droegemeier K, Hickmon N L. 2006. Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part I: comparsion of coarse and cine-grid experiments [J]. Monthly Weather Review, 134(3): 807-833. doi: 10.1175/MWR3097.1
|
Kühnlein C, Keil C, Craig G C, et al. 2014. The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation [J]. Quarterly Journal of The Royal Meteorological Society, 140(682): 1552-1562. doi: 10.1002/qj.2238
|
Ma X L, Xue J S, Lu W S. 2009. Study on ETKF-based initial perturbation scheme for GRAPES global ensemble prediction [J]. Acta Meteorologica Sinica, 23(5): 562-574. doi; 10.1029/2009JD012351
|
Nuissier O, Marsigli C, Vincendon B, et al. 2016. Evaluation of two convection-permitting ensemble systems in the HyMex Special Observation Period (SOP1) framework [J]. Quarterly Journal of The Royal Meteorological Society, 142(S1): 404-418. doi: 10.1002/qj.2859
|
Wang Y, Bellus M, Wittmann C, et al. 2011. The Central European limited-area ensemble forecasting system: ALADIN-LAEF [J]. Quarterly Journal of The Royal Meteorological Society, 137(655): 483-502. doi: 10.1002/qj.751
|
Wilks D S. 2006. Statistical methods in the atmospheric sciences (Second Edition)[M]. San Diego: Academic Press of Elsevier
|