Citation: | ZHANG Wulong, CHEN Chaoping, YANG Kangquan. 2024: Experiment and verification of fine gridded precipitation forecast fusion correction in Sichuan. Torrential Rain and Disasters, 43(2): 176-184. DOI: 10.12406/byzh.2023-077 |
Fine-scale quantitative precipitation forecast is a key issue and challenge in weather forecasting services. In this study, based on hourly precipitation from the 1 km× 1 km resolution Southwest China WRF-based Intelligent Numeric Grid forecast System (SWC-WINGS), a fusion-corrected experiment was conducted using time lag and probability matching methods. The fusion-corrected forecast of hourly pre⁃ cipitation was then verified utilizing the CMA Multi-source Precipitation Analysis System (CMAPS) three-source merged precipitation obser⁃ vation grid data from 1 July to 31 August 2022 in Sichuan. Finally, the fusion-corrected method was applied to a short-term heavy precipita⁃ tion process over the western Sichuan Basin. The results show that: (1) Compared with the model precipitation forecasts, the time-lagged en⁃ semble forecast was over-optimistic for small-scale precipitation and over-conservative for large-scale precipitation. (2) However, the fu⁃ sion-corrected method by time lag and probability matching methods overcame the above difficulties and showed significant improvement in the TS score, particularly in 1~2 h nowcast time. The TS score for hourly precipitation exceeding 0.1 mm, 5 mm, 10 mm, and 20 mm were in⁃ creased on average by 7.2%, 17.2%, 28.3%, and 36.3%, respectively. (3) A case studies also showed that the fusion-corrected method had good improvement and correction capabilities on the hourly precipitation forecast, especially for large-scale precipitation forecasts.
曹勇, 包红军, 张恒德, 等. 2021. 基于快速滚动更新的无缝隙定量降水预报模型[J]. 河海大学学报(自然科学版), 49(4): 303-308. doi: 10.3876/j.issn.1000-1980.2021.04.002
CAO Y, Bao H J, Zhang H D, et al. 2021. Seamless quantitative precipitation forecasting model based on rapid rolling update technique [J]. Journal of Hohai University (Natural Sciences), 49(4): 303-308 (in Chinese). doi: 10.3876/j.issn.1000-1980.2021.04.002
|
代刊, 曹勇, 钱奇峰, 等. 2016. 中短期数字化天气预报技术现状及趋势[J]. 气象, 42(12): 1445-1455. doi: 10.7519/j.issn.1000-0526.2016.12.002
Dai K, Cao Y, Qian Q F, et al. 2016. Situation and tendency of operational technologies in short and medium range weather forecast [J]. Meteorological Monthly, 42(12): 1445-1455 (in Chinese). doi: 10.7519/j.issn.1000-0526.2016.12.002
|
代刊, 朱跃建毕宝贵. 2018. 集合模式定量降水预报的统计后处理技术研究综述[J]. 气象学报, 76(4): 493-510. doi: 10.11676/qxxb2018.015
Dai K, Zhu Y J, Bi B G. 2018. The review of statistical post-process technologies for quantitative precipitation forecast of ensemble prediction system [J]. Acta Meteorologica Sinica, 76(4): 493-510 (in Chinese). doi: 10.11676/qxxb2018.015
|
傅娜, 陈葆德, 谭燕, 等. 2013. 基于快速更新同化的滞后短时集合预报试验及检验[J]. 气象, 39(10): 1247-1256. doi: 10.7519/j.issn.1000-0526.2013.10.002
Fu N, Chen B D, Tan Y, et al. 2013. Time-Lag ensemble forecasting experiment and evaluation based on SMB-WARR[J]. Meteorological Monthly, 39(10): 1247-1256 (in Chinese). doi: 10.7519/j.issn.1000-0526.2013.10.002
|
衡志炜, 程晓龙. 2018. 西南涡加密资料同化对西南区域模式降水预报的影响[J]. 高原山地气象研究, 38(2): 3-10. doi: 10.3969/j.issn.1674-2184.2018.02.001
Heng Z W, Chen X L. 2018. Influence of assimilation of southwest vortex intensive observation on precipitation forecast of southwestern regional model [J]. Plateau and Mountain Meteorology Research, 38(2): 3-10 (in Chinese). doi: 10.3969/j.issn.1674-2184.2018.02.001
|
黄丽萍, 邓莲堂, 王瑞春, 等. 2022. CMA-MESO关键技术集成及应用[J]. 应用气象学报, 33(6): 641-654. doi: 10.11898/1001-7313.20220601
Huang L P, Deng L T, Wang R C, et al. 2022. Key technologies of CMA-MESO and application to operational forecast [J]. Journal of Applied Meteorological Science, 33(6): 641-654 (in Chinese). doi: 10.11898/1001-7313.20220601
|
金荣花, 代刊, 赵瑞霞, 等. 2019. 我国无缝隙精细化网格天气预报技术进展与挑战[J]. 气象, 45(4): 445-457. doi: 10.7519/j.issn.1000-0526.2019.04.001
Jin R H, Dai K, Zhao R X, et al. 2019. Progress and challenge of seamless fine gridded weather forecasting technology in China [J]. Meteorological Monthly, 45(4): 445-457 (in Chinese). doi: 10.7519/j.issn.1000-0526.2019.04.001
|
刘扬, 唐健, 王铸, 等. 2022. 基于CMA区域集合预报的暴雨灾害风险预估研究—以"21·7"河南暴雨为例[J]. 气象与环境科学, 45(2): 14-19. doi: 10.16765/j.cnki.1673-7148.2022.02.002
Liu Y, Tang J, Wang Z, et al. 2022. Study on rainstorm disaster risk pre-assessment based on the CMA regional ensemble prediction system—taking the July 2021 Henan extreme torrential rain as an example [J]. Meteorological and Environmental Sciences, 45(2): 14-19 (in Chinese). doi: 10.16765/j.cnki.1673-7148.2022.02.002
|
龙柯吉, 谷军霞, 师春香, 等. 2020. 多种降水实况融合产品在四川一次强降水过程中的评估[J]. 高原山地气象研究, 40(2): 31-37. doi: 10.3969/j.issn.1674-2184
Long K J, Gu J X, Shi C X, et al. 2020. Quality assessment of several merged precipitation products in a heavy rainfall Process in Sichuan [J]. Plateau and Mountain Meteorology Research, 37(4): 1-7 (in Chinese). doi: 10.3969/j.issn.1674-2184
|
马申佳, 陈超辉, 何宏让, 等. 2018. 基于BGM的对流尺度集合预报试验及其检验[J]. 高原气象, 37(2): 495-504. doi: 10.7522/j.issn.1000-0534.2017.00073
Ma S J, Chen C H, He H R, et al. 2018. Experiment and verification of the convective-scale ensemble forecast based on BGM [J]. Plateau Meteorology, 37(2): 495-504(in Chinese). doi: 10.7522/j.issn.1000-0534.2017.00073
|
马玉坤, 马俊强, 李菲, 等. 2022. 青藏高原边坡临夏地区短时强降水时空分布及海拔特征分析[J]. 沙漠与绿洲气象, 16(3): 16-23. doi: 10.12057/j.issn.1002-0799.2022.03.003
Ma Y K, Ma J Q, Li F, et al. 2022. Temporal and spatial distribution characteristics of short-time strong rainfall and its altitude distribution in Linxia at plateau slope [J]. Desert and Oasis Meteorology, 16(3): 16-23(in Chinese). doi: 10.12057/j.issn.1002-0799.2022.03.003
|
庞玥, 刘祥, 韩潇, 等. 2022. ECMWF集合预报产品在重庆暴雨预报中的检验与应用[J]. 气象科学, 42(4): 549-556. doi: 10.12306/2021jms.0042
Pang Y, Liu X, Han X, et al. 2022. Verification and application on forecasting heavy rainfall over Chongqing region by using ECMWF ensemble forecast products[J]. Journal of the Meteorological Sciences, 42(4): 549-556 (in Chinese). doi: 10.12306/2021jms.0042
|
师春香, 潘旸, 谷军霞, 等. 2019. 多源气象数据融合格点实况产品研制进展[J]. 气象学报, 77(4): 774-783. doi: 10.11676/qxxb2019.043
Shi C X, Pan Y, Gu J X, et al. 2019. A review of multi-source meteorological data fusion products[J]. Acta Meteorologica Sinica, 77(4): 774-783 (in Chinese). doi: 10.11676/qxxb2019.043
|
孙继松, 何娜, 王国荣, 等. 2012. "7.21"北京大暴雨系统的结构演变特征及成因初探[J]. 暴雨灾害, 31(3): 218-225. http://www.byzh.org.cn/cn/article/id/2128
Sun J S, He N, Wang G R, et al. 2012. Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012 [J]. Torrential Rain and Disasters, 31(3): 218-225 (in Chinese). doi: 1004-9045(2012)03-0218-08
|
唐文苑, 郑永光. 2019. 基于快速更新同化数值预报的小时降水量时间滞后集合订正技术[J]. 气象, 45(3): 305-317. doi: 10.7519/j.issn.1000-0526.2019.03.002
Tang W Y, Zheng Y G. 2019. Improvement of hourly precipitation forecast using a time lagged ensemble based on rapid refresh assimilation and forecast [J]. Meteorological Monthly, 45(3): 305-317 (in Chinese). doi: 10.7519/j.issn.1000-0526.2019.03.002
|
韦惠红, 黄小彦, 刘文婷, 等. 2022. 复杂山地下引发特大暴雨的准静止MCS观测分析[J]. 暴雨灾害, 41(3): 241-253. doi: 10.3969/j.issn.1004-9045.2022.03.001
Wei H H, Huang X Y, Liu W T, et al. 2022. Analysis of quasi-stationary MCS causing extreme torrential rain event under complex mountains in Southwest Hubei [J]. Torrential Rain and Disasters, 41(3): 241-253 (in Chinese). doi: 10.3969/j.issn.1004-9045.2022.03.001
|
许冠宇, 李琳琳, 田刚, 等. 2020. 国家级降水融合产品在长江流域的适用性评估[J]. 暴雨灾害, 39(4): 400-408. doi: 10.3969/j.issn.1004-9045.2020.04.010
Xu G Y, Li L L, Tian G, et al. 2020. Assessing the applicability of national precipitation merged products in the Yangtze River Basin [J]. Torrential Rain and Disasters, 39(4): 400-408(in Chinese). doi: 10.3969/j.issn.1004-9045.2020.04.010
|
张华龙, 程正泉, 肖柳斯, 等. 2022. 集合百分位融合法在广东台风降水预报中的改进[J]. 气象, 48(1): 84-95. doi: 10.7519/j.issn.1000-0526.2021.061701
Zhang H L, Cheng Z Q, Xiao L S, et al. 2022. Improvement of the optimal percentile fusion method based on ensemble forecast of typhoon rainfall in Guangdong province [J]. Meteorological Monthly, 48(1): 84-95 (in Chinese). doi: 10.7519/j.issn.1000-0526.2021.061701
|
张武龙, 王彬雁, 陈朝平, 等. 2021. SWCWARMS模式小时降水量时间滞后集合预报研究[J]. 气象科技, 49(4): 561-568. doi: 10.19517/j.1671-6345.20200376
Zhang W L, Wang B Y, Chen C P, et al. 2021. Time-lagged ensemble forecast of hourly precipitation based on SWCWARMS model [J]. Meteorological Science and Technology, 49(4): 561-568 (in Chinese). doi: 10.19517/j.1671-6345.20200376
|
周迪, 陈静, 陈朝平, 等. 2015. 暴雨集合预报-观测概率匹配订正法在四川盆地的应用研究[J]. 暴雨灾害, 34(2): 97-104. doi: 10.3969/j.issn.1004-9045.2015.02.001
Zhou D, Chen J, Chen C P, et al. 2015. Application research on heavy rainfall calibration based on ensemble forecast vs observed precipitation probability matching method in the Sichuan basin [J]. Torrential Rain and Disasters, 34(2): 97-104(in Chinese). doi: 10.3969/j.issn.1004-9045.2015.02.001
|
Ebert E E. 2001. Ability of a poor man's ensemble to predict the probability and distribution of precipitation [J]. Monthly Weather Review, 129(10): 2461-2480. doi: 10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2
|
Hoffman R N, Kalnay E. 1983. Lagged average forecasting, an alternative to Monte Carlo forecasting [J]. Tellus series A-dynamicmeteorology and oceanography, 35(2): 100-118. doi: 10.1111/j.1600-0870.1983.tb00189.x
|
Theis S E, Hense A, Damrath U. 2005. Probabilistic precipitation forecasts from a deterministic model: A pragmatic approach [J]. Meteorological Applications, 12(3): 257-268. doi: 10.1017/S1350482705001763
|