Advanced Search
XU Guirong, WANG Xiaofang, WAN Rong, LI Ping, LI Yusheng, WANG Junchao. 2024: Observational characteristics of summer non-precipitating clouds in Jiulong on the east side of the Qinghai-Tibet Plateau. Torrential Rain and Disasters, 43(2): 135-145. DOI: 10.12406/byzh.2023-148
Citation: XU Guirong, WANG Xiaofang, WAN Rong, LI Ping, LI Yusheng, WANG Junchao. 2024: Observational characteristics of summer non-precipitating clouds in Jiulong on the east side of the Qinghai-Tibet Plateau. Torrential Rain and Disasters, 43(2): 135-145. DOI: 10.12406/byzh.2023-148

Observational characteristics of summer non-precipitating clouds in Jiulong on the east side of the Qinghai-Tibet Plateau

More Information
  • Received Date: July 16, 2023
  • Accepted Date: December 19, 2023
  • Available Online: May 09, 2024
  • Jiulong is located on the east side of the Qinghai-Tibet Plateau (QTP) and is a region prone to southwest vortex. Cloud detection with new-type detection equipment in this region helps enhance the knowledge of cloud characteristics in the southwest vortex-prone region. In this study, based on the ground-based microwave radiometer data from June to August of 2018-2019 in Jiulong, the observational characteristics of cloud occurrence frequency (COF), liquid water path (LWP), and supercooled liquid water path (SLWP) for non-precipitating clouds during the summer seasons are investigated. The results are as follows. The monthly average COF of summer non-precipitating clouds in Jiulong is between 67%-82%, with low and middle clouds being the main types, and high clouds being less common. For low clouds, the COF is low in daytime and high in nighttime, while it is the opposite for middle and high clouds. The vertical distribution of COF presents an unimodal pattern, with a peak of 8.1% at a height of about 2 km. Due to the diurnal variation of atmospheric thermal stratification, the unimodal pattern of COF shows diurnal differences. Moreover, the average LWP of summer non-precipitating clouds in Jiulong is 0.433 kg·m-2, with the average LWPs of low, middle, and high clouds being 0.665, 0.240, and 0.102 kg·m-2, respectively. The diurnal variation of LWP in low clouds is similar to their COF, while the diurnal variations of LWP in middle and high clouds are not significant. Additionally, the average SLWP of cold clouds among summer non-precipitating clouds in Jiulong is 0.154 kg·m-2, with the average SLWPs of low, middle, and high clouds being 0.065, 0.166, and 0.102 kg·m-2, respectively. On the whole, the proportion of SLWP in LWP is about 34.3%-38.8%. The proportion of SLWP increases with the height of the cloud, which makes the diurnal variations of SLWP in middle and high clouds similar to that of LWP. Compared with central China, the characteristics of summer non-precipitating clouds in Jiulong are significantly different, and this is closely related to the different characteristics of atmospheric water vapor between the two regions.

  • 陈葆德, 梁萍, 李跃清. 2008. 青藏高原云的研究进展[J]. 高原山地气象研究, 28(1): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX200801011.htm

    Chen B D, Liang P, Li Y Q. 2008. An overview of research on clouds over the Tibetan Plateau[J]. Plateau and Mountain Meteorology Research, 28(1): 66-71 (in Chinese). doi: 1674-2184(2008)01-0066-06
    陈炜, 李跃清. 2019. 青藏高原东部重力波过程与西南涡活动的统计关系[J]. 大气科学, 43(4): 773-782. doi: 10.3878/j.issn.1006-9895.1810.18130

    Chen W, Li Y Q. 2019. Statistical relationship between gravity waves over the eastern Tibetan Plateau and the Southwest vortex[J]. Chinese Journal of Atmospheric Sciences, 43(4): 773-782 (in Chinese). doi: 10.3878/j.issn.1006-9895.1810.18130
    傅云飞, 潘晓, 刘国胜, 等. 2016. 基于云亮温和降水回波顶高度分类的夏季青藏高原降水研究[J]. 大气科学, 40(1): 102-120. doi: 10.3878/j.issn.1006-9895.1507.15165

    Fu Y F, Pan X, Liu G S, et al. 2016. Characteristics of precipitation based on cloud brightness temperatures and storm tops in summer over the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 40(1): 102-120. doi: 10.3878/j.issn.1006-9895.1507.15165
    何光碧. 2012. 西南低涡研究综述[J]. 气象, 38(2): 155-163. doi: 10.7519/j.issn.1000-0526.2012.02.003

    He G B. 2012. Review of the southwest vortex research[J]. Meteorological Monthly, 38(2): 155-163 (in Chinese). doi: 10.7519/j.issn.1000-0526.2012.02.003
    李德俊, 李跃清, 柳草, 等. 2010. 基于TRMM卫星探测对宜宾夏季两次暴雨过程的比较分析[J]. 气象学报, 68(4): 559-568. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201004015.htm

    Li D J, Li Y Q, Liu C, et al. 2010. Comparative analysis between two summer heavy rain events in Yibin based on the TRMM data[J]. Acta Meteorologica Sinica, 68(4): 559-568 (in Chinese). doi: 0577-6619/2010/68(4)-0559-68
    李国平. 2002. 青藏高原动力气象学[M]. 北京: 气象出版社.

    Li G P. 2002. Dynamic Meteorology of the Tibetan Plateau[M]. Beijing: China Meteorology Press (in Chinese)
    李国平. 2013. 高原涡、西南涡研究的新进展及有关科学问题[J]. 沙漠与绿洲气象, 7(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201303003.htm

    Li G P. 2013. Advances in Tibetan Plateau Vortex and Southwest Vortex research and related scientific problems[J]. Desert and Oasis Meteorology, 7(3): 1-6 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201303003.htm
    李跃清, 徐祥德. 2016. 西南涡研究和观测试验回顾及进展[J]. 气象科技进展, 6(3): 134-140. doi: 10.3969/j.issn.2095-1973.2016.03.018

    Li Y Q, Xu X D. 2016. A review of the research and observing experiment on southwest China vortex[J]. Advances in Meteorological Science and Technology, 6(3): 134-140 (in Chinese). doi: 10.3969/j.issn.2095-1973.2016.03.018
    刘黎平, 郑佳锋, 阮征. 2015. 2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果[J]. 气象学报, 73(4): 635-647. doi: 10.11676/qxxb2015.041

    Liu L P, Zheng J F, Ruan Z. 2015. The preliminary analyses of the cloud properties over the Tibetan Plateau from the field experiments in clouds precipitation with the various radars[J]. Acta Meteorologica Sinica, 73(4): 635-647 (in Chinese). doi: 10.11676/qxxb2015.041
    刘屹岷, 燕亚菲, 吕建华, 等. 2018. 基于CloudSat/CALIPSO卫星资料的青藏高原云辐射及降水的研究进展[J]. 大气科学, 42(4): 847-858. doi: 10.3878/j.issn.1006-9895.1805.17281

    Liu Y M, Yan Y F, Lü J H, et al. 2018. Review of current investigations of cloud, radiation and rainfall over the Tibetan Plateau with the CloudSat/ CALIPSO dataset[J]. Chinese Journal of Atmospheric Sciences, 42(4): 847-858 (in Chinese). doi: 10.3878/j.issn.1006-9895.1805.17281
    卢敬华. 1986. 西南低涡概论[M]. 北京: 气象出版社.

    Lu J H. 1986. Introduction to the southwest China vortex[M]. Beijing: China Meteorology Press (in Chinese)
    卢萍, 李跃清. 2020. 9年夏季连续加密探空观测的九龙站边界层特征分析[J]. 高原气象, 39(5): 1058-1069. doi: 10.7522/j.issn.1000-0534.2019.00098

    Lu P, Li Y Q. 2020. Analyses of the boundary layer characteristics by intensive sounding observation data at Jiulong station in summer for 9 years[J]. Plateau Meteorology, 39(5): 1058-1069 (in Chinese). doi: 10.7522/j.issn.1000-0534.2019.00098
    谌贵珣, 何光碧. 2008. 2000~2007年西南低涡活动的观测事实分析[J]. 高原山地气象研究, 28(4): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX200804009.htm

    Shen G X, He G B. 2008. The observed facts analysis of southwest vortex[J]. Plateau and Mountain Meteorology Research, 28(4): 59-65 (in Chinese). doi: 1674-2184(2008)04-0059-07
    万霞, 徐桂荣, 万蓉, 等. 2020. 青藏高原东侧甘孜云雷达观测的非降水云垂直结构特征分析[J]. 暴雨灾害, 39(5): 442-450. doi: 10.3969/j.issn.1004-9045.2020.05.002

    Wan X, Xu G R, Wan R, et al. 2020. Vertical structure of non-precipitation cloud obtained from cloud radar observation at Ganzi in the eastern Qinghai-Tibet Plateau[J]. Torrential Rain and Disasters, 39(5): 442-450 (in Chinese). doi: 10.3969/j.issn.1004-9045.2020.05.002
    王改利, 周任然, 扎西索朗, 等. 2021. 青藏高原墨脱地区云降水综合观测及初步统计特征分析[J]. 气象学报, 79(5): 841-852. doi: 10.11676/qxxb2021.054

    Wang G L, Zhou R R, Zhaxi S L, et al. 2021. Comprehensive observations and preliminary statistical analysis of clouds and precipitation characteristics in Moutuo of Tibet Plateau[J]. Acta Meteorologica Sinica, 79(5): 841-852 (in Chinese). doi: 10.11676/qxxb2021.054
    吴翀, 刘黎平, 翟晓春. 2017. Ka波段固态发射机体制云雷达和激光云高仪探测青藏高原夏季云底能力和效果对比分析[J]. 大气科学, 41(4): 659-672. doi: 10.3878/j.issn.1006-9895.1701.16170

    Wu C, Liu L P, Zhai X C. 2017. The comparison of cloud base observations with Ka-band solid-state transmitter-based millimeter wave cloud radar and ceilometer in summer over Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 41(4): 659-672 (in Chinese). doi: 10.3878/j.issn.1006-9895.1701.16170
    徐桂荣, 张文刚, 万霞, 等. 2019. 地基微波辐射计反演的青藏高原东侧甘孜大气温湿廓线分析[J]. 暴雨灾害, 38(3): 238-248. doi: 10.3969/j.issn.1004-9045.2019.03.006

    Xu G R, Zhang W G, Wan X, et al. 2019. Analysis on atmospheric profiles retrieved from microwave radiometer observation at Ganzi in the eastern Qinghai-Tibet Plateau[J]. Torrential Rain and Disasters, 38(3): 238-248 (in Chinese). doi: 10.3969/j.issn.1004-9045.2019.03.006
    徐祥德, 周明煜, 陈家宜, 等. 2001. 青藏高原地-气过程动力、热力结构综合物理图象[J]. 中国科学(D辑), 31(5): 428-440. doi: 10.1360/zd2001-31-5-428

    Xu X D, Zhou M Y, Chen J Y, et al. 2001. A comprehensive physical image of the dynamical and thermal structures of the land-atmosphere processes in the Tibetan Plateau[J]. Science in China (Series D), 31(5): 428-440 (in Chinese). doi: 10.1360/zd2001-31-5-428
    杨军, 陈宝君, 银燕, 等. 2011. 云降水物理学[M]. 北京: 气象出版社.

    Yang J, Chen B J, Yin Y, et al. 2011. Physics of clouds and precipitation[M]. Beijing: China Meteorology Press (in Chinese)
    姚秀萍, 马嘉理, 刘俏华, 等. 2021. 青藏高原夏季降水研究进展[J]. 气象科技进展, 11(3): 66-74. doi: 10.3969/j.issn.2095-1973.2021.03.009

    Yao X P, Ma J L, Liu Q H, et al. 2021. Research progress on summer precipitation over the Tibetan Plateau[J]. Advances in Meteorological Science and Technology, 11(3): 66-74 (in Chinese). doi: 10.3969/j.issn.2095-1973.2021.03.009
    郁淑华, 高文良, 彭骏. 2021. 2012—2017年不同涡源西南低涡多发的影响因素分析[J]. 暴雨灾害, 40(6): 577-588. doi: 10.3969/j.issn.1004-9045.2021.06.002

    Yu S H, Gao W L, Peng J. 2021. Analysis of influencing factors on frequent occurrence of Southwest China Vortexes with different vortex sources from 2012 to 2017[J]. Torrential Rain and Disasters, 40(6): 577-588 (in Chinese). doi: 10.3969/j.issn.1004-9045.2021.06.002
    张蔚然, 刘黎平, 吴翀. 2022. X波段相控阵偏振雷达观测墨脱地区云降水宏观特征的统计研究[J]. 大气科学, 47(1): 1-16. doi: 10.3878/j.issn.1006-9895.2109.21050

    Zhang W R, Liu L P, Wu C. 2022. Statistical characteristics of cloud precipitation in the Motuo area observed by X-band dual-polarization phased array radar[J]. Chinese Journal of Atmospheric Sciences, 47(1): 1-16 (in Chinese). doi: 10.3878/j.issn.1006-9895.2109.21050
    赵传峰, 杨以坤. 2021. 地基云遥感反演进展及挑战[J]. 暴雨灾害, 40(3): 243-258. doi: 10.3969/j.issn.1004-9045.2021.03.003

    Zhao C F, Yang Y K. 2021. Progress and chanllenges of ground-based cloud remote sensing[J]. Torrential Rain and Disasters, 40(3): 243-258 (in Chinese). doi: 10.3969/j.issn.1004-9045.2021.03.003
    朱怡杰, 邱玉珺, 陆春松. 2019. 青藏高原那曲夏季云中水成物分布特征的毫米波雷达观测[J]. 气象, 45(7): 945-957. doi: 10.7519/j.issn.1000-0526.2019.07.005

    Zhu Y J, Qiu Y J, Lu C S. 2019. Millimeter wave radar observation of hydrometeor distribution characteristics of cloud in summer in Nagqu, Qinghai-Tibet Plateau[J]. Meteorological Monthly, 45(7): 945-957 (in Chinese). doi: 10.7519/j.issn.1000-0526.2019.07.005
    Albrecht B A. 1989. Aerosols, cloud microphysics, and fractional cloudiness[J]. Science, 245(4923): 1227-1230. doi: 10.1126/science.245.4923.1227
    Crewell S, Löhnert U. 2003. Accuracy of cloud liquid water path from ground-based microwave radiometry: 2. Sensor accuracy and synergy[J]. Radio Science, 38: 8042. doi: 10.1029/2002RS002634
    Crewell S, Bloemink H, Feijt A, et al. 2004. The BALTEX BRIDGE campaign: an integrated approach for a better understanding of clouds[J]. Bulletin of the American Meteorological Society, 85: 1565-1584. doi: 10.1175/BAMS-85-10-1565
    Frey R A, Baum B A, Menzel W P, et al. 1999. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing[J]. Journal of Geophysical Research, 104: 24547-24555. doi: 10.1029/1999JD900796
    Garrett T, Zhao C F. 2013. Ground-based remote sensing of thin clouds in the Arctic[J]. Atmospheric Measurement Techniques, 6(5): 1227-1243. doi: 10.5194/amt-6-1227-2013
    Khvorostyanov V I, Curry J A. 2014. Thermodynamics, kinetics, and microphysics of clouds[M]. New York: Cambridge University Press
    Liljegren J C, Clothiaux E E, Mace G G, et al. 2001. A new retrieval for cloud liquid water path using a groundbased microwave radiometer and measurements of cloud temperature[J]. Journal of Geophysical Research, 106: 14485-14500. doi: 10.1029/2000JD900817
    Luke E P, Kollias P, Shupe M D. 2010. Detection of supercooled liquid in mixed-phase clouds using radar Doppler spectra[J]. Journal of Geophysical Research, 115: D19201. doi: 10.1029/2009JD012884
    Ramanathan V, Cess R D, Harrison E F, et al. 1989. Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment[J]. Science, 243(4887): 57-63. doi: 10.1126/science.243.4887.57
    Rossow W B, Schiffer R A. 1999. Advances in understanding clouds from ISCCP[J]. Bulletin of the American Meteorological Society, 80: 2261-2287. doi: 10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2
    Stephens G L. 2005. Cloud feedbacks in the climate system: a critical review[J]. Journal of Climate, 18: 237-273. doi: 10.1175/JCLI-3243.1
    Sun Z, Shine K P. 1995. Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed-phase clouds[J]. Journal of Climate, 8: 1874-1888. doi: 10.1175/1520-0442(1995)008<1874:poicrp>2.0.co;2
    Wan X, Zheng J, Wan R, et al. 2022. Intercomparison of cloud vertical structures over four different sites of the eastern slope of the Tibetan Plateau in summer using Ka-band millimeter-wave radar measurements[J]. Remote Sensing, 14: 3702. doi: 10.3390/rs14153702
    Wang P K. 2013. Physics and dynamics of clouds and precipitation[M]. New York: Cambridge University Press
    Ware R, Carpenter R, Güldner J, et al. 2003. A multi-channel radiometric profiler of temperature, humidity and cloud liquid[J]. Radio Science, 38: 8079. doi: 10.1029/2002RS002856
    Westwater E R. 1978. The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave radiometry[J]. Radio Science, 13: 677-685. doi: 10.1029/RS013i004p00677
    Westwater E R, Crewell S, Mätzler C. 2004. A review of surfaced-based microwave and millimeter-wave radiometric remote sensing of the Troposphere[J]. URSI Radio Science Bulletin, 310: 59-80. doi: 10.23919/URSIRSB.2004.7909438
    Xu G, Cui C, Li W, et al. 2011. Variation of GPS precipitable water over the Qinghai-Tibet Plateau: possible teleconnection triggering rainfall over the Yangtze River Valley[J]. Terrestrial, Atmospheric and Oceanic Sciences, 22(2): 195-202. doi: 10.3319/TAO.2010.09.09.01(TibXS)
    Xu G, Xi B, Zhang W, et al. 2015. Comparison of atmospheric profiles between microwave radiometer retrievals and radiosonde soundings[J]. Journal of Geophysical Research: Atmospheres, 120: 10313-10323. doi: 10.1002/2015JD023438
    Xu G, Zhang W, Wan X, et al. 2021. Cloud occurrence frequency and cloud liquid water path for non-precipitation clouds using ground-based measurements over central China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 215: 105575. doi: 10.1016/j.jastp.2021.105575
    Zhao C F, Garrett T J. 2015. Effects of Arctic haze on surface cloud radiative forcing[J]. Geophysical Research Letters, 42(2): 557-564. doi: 10.1002/2014GL062015

Catalog

    Article views (116) PDF downloads (51) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return