Citation: | HU Chun, LIU Xingzhong, HE Chao, et al. 2025. A study on downscaling GPM precipitation data based on optimal interpolation and geographically weighted regression: A case study of Ganzi prefecture, Sichuan Province [J]. Torrential Rain and Disasters,44(2):1−9. DOI: 10.12406/byzh.2023-154 |
Satellite precipitation can provide important precipitation information and is currently an important reference for precipitation. However, satellite precipitation data is limited by resolution and accuracy, resulting in shortcomings in its application. In this study, based on the optimal interpolation and geographically weighted regression methods, the GPM satellite precipitation data in Ganzi Prefecture were downscaled and fused using the normalized difference vegetation index (NDVI) and digital elevation model (DEM) as the dependent variables. The satellite precipitation data was downscaled from 0.1°×0.1° to 1 km×1 km. The quality of the downscaled data was evaluated using multiple parameters, and the spatiotemporal differences between the downscaled data and station data were compared. The following findings were observed. (1) Both GPM and OIGPM precipitation data can reflect the spatial distribution of precipitation, but GPM tends to underestimate precipitation while OIGPM is more accurate. (2) The fusion downscaled precipitation using GWR can improve the spatial resolution of precipitation and enhance its accuracy. (3) Quantitative calculations of multiple evaluation parameters show that the downscaled precipitation data obtained through the optimal interpolation and GWR methods are significantly better than the original data. (4) The Optimal Interpolated GPM precipitation data (GOIGPM) without residual correction has a higher Correlation Coefficient and lower Root Mean Square Error with rainfall gauge data in the Ganzi region, making it more applicable.
陈汉清,鹿德凯,周泽慧,等.2019. GPM降水产品评估研究综述[J].水资源保护,35(1):27−34. doi: 10.3880/j.issn.1004-6933.2019.01.006
Chen H Q, Lu D K, Zhou Z H, et al. 2019. An overview of assessments on Global Precipitation Measurement (GPM) precipitation products [J]. Water Resources Protection,35(1):27−34 (in Chinese). doi:10.3880/j.issn.1004−6933.2019.01.006
|
杜懿,王大洋,张智,等.2021. GPM IMERG降水产品在珠江流域的适用性分析[J].水文,41(6):1−6. doi: 10.19797/j.cnki.1000-0852.20200318
Du Y, Wang D Y, Zhang Z, et al. 2021. Applicability of GPM IMERG satellite precipitation product in pearl river basin [J]. Journal of China Hydrology,41(6):1−6 (in Chinese). doi:10.19797/j.cnki.1000−0852.20200318
|
傅云飞,罗晶,罗双,等.2022. GPM卫星DPR和GMI探测的2018年5月重庆超级单体云团降水结构特征分析[J].暴雨灾害,41(1):1−14. doi: 10.3969/j.issn.1004-9045.2022.01.001
Fu Y F, Luo J, Luo S, et al. 2022. Rainstorm structure of a supercell cloud occurred in Chongqing in May 2018 measured by GPM DPR and GMI [J]. Torrential Rain and Disasters,41(1):1−14 (in Chinese). doi:10.3969/j.issn.1004−9045.2022.01.001
|
胡实,韩建,占车生,等.2020.太行山区遥感卫星反演降雨产品降尺度研究[J].地理研究,39(7):1680−1690. doi: 10.11821/dlyj020190545
Hu S, Han J, Zhan C S, et al. 2020. Spatial downscaling of remotely sensed precipitation in Taihang Mountains [J]. Geographical Research,39(7):1680−1690 (in Chinese). doi: 10.11821/dlyj020190545
|
韩焱红,郜静静,苗蕾,等.2019.基于最优插值的雷达定量降水估测订正及应用—以广元市为例[J].高原山地气象研究,39(3):82−85,96. doi: 10.3969/j.issn.1674-2184.2019.03.013
Han Y H, Gao J J, Miao L, et al. 2019. Correction for radar-derived quantitation precipitation estimation based on the optimum interpolation and Its application—taking Guangyuan as an example [J]. Plateau and Mountain Meteorology Research,39(3):82−85,96 (in Chinese). doi:10.3969/j.issn.1674−2184.2019.03.013
|
刘洁,黄本胜,陈晓宏,等.2023. GPM遥感降水产品在广东省的极端降水事件适用性分析[J].南水北调与水利科技(中英文),21(1):87−94. doi: 10.13476/j.cnki.nsbdqk.2023.0010
Liu J, Huang B S, Chen X H, et al. 2023. Applicability analysis of GPM remote sensing precipitation products in extreme precipitation events in Guangdong province [J]. South-to-North Water Transfers and Water Science & Technology,21(1):87−94. (in Chinese). doi: 10.13476/j.cnki.nsbdqk.2023.0010
|
李林,张鹏亮,申红艳,等.2021.三江源地区水汽输送的时空变化特征及其机理研究[J].高原山地气象研究,41(1):9−16. doi: 10.3969/j.issn.1674-2184.2021.01.002
Li L, Zhang P L, Shen H Y, et al. 2021. Spatial and temporal variation characteristics and mechanism of water vapor transport over the three rivers source region [J]. Plateau and Mountain Meteorology Research,41(1):9−16 (in Chinese). doi:10.3969/j.issn.1674−2184.2021.01.002
|
林书睿,顾恒竹,路明月.2022.基于GWR模型的典型区域GPM数据降尺度研究——以浙江省为例[J].气象科学,42(6):793−803. doi: 10.12306/2022jms.0003
Lin S R, Gu H Z, Lu M Y. 2022. Downscaling research of GPM data in typical region based on GWR model: a case study of Zhejiang province [J]. Journal of the Meteorologica,42(6):793−803 (in Chinese). doi: 10.12306/2022jms.0003
|
李炎坤,高黎明,张乐乐,等.2022.青海湖流域及周边区域TRMM 3B43降水数据降尺度方法对比分析[J].干旱区研究,39(6):1706−1716. doi: 10.13866/j.azr.2022.06.02
Li Y K, Gao L M, Zhang L, et al. 2022. Comparison of downscaling methods for TRMM 3B43 precipitation data in the Qinghai Lake basin and its surrounding areas [J]. Arid Zone Research,39(6):1706−1716 (in Chinese). doi: 10.13866/j.azr.2022.06.02
|
潘旸,沈艳,宇婧婧,等.2012.基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验[J].气象学报,70(6):1381−1389. doi: 10.11676/qxxb2012.116
Pan Y, Shen Y, Yu J J, et al. 2012. Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique [J]. Acta Meteorologica Sinica,70(6):1381−1389 (in Chinese). doi: 10.11676/qxxb2012.116
|
曲学斌,付亚男,袁秀芝,等.2020. GPM-IMERG日降水数据在内蒙古地区的适用性分析[J].暴雨灾害,39(3):293−299. doi: 10.3969/j.issn.1004-9045.2020.03.010
Qu X B, Fu Y N, Yuan X Z, et al. 2020. Applicability analysis of GPM-IMERG daily precipitate on data in Inner Mongolia [J]. Torrential Rain and Disasters,39(3):293−299 (in Chinese). doi:10.3969/j.issn.1004−9045.2020.03.010
|
史岚,何其全,杨娇,等.2019.闽浙赣地区GPM IMERG降水产品降尺度建模与比较分析[J].地球信息科学学报,21(10):1642−1652. doi: 10.12082/dqxxkx.2019.180603
Shi L, He Q Q, Yang J, et al. 2019. Downscaling modeling of the GPM IMERG precipitation product and comparative analysis in the Fujian-Zhejiang-Jiangxi region [J]. Journal of Geo-information Science,21(10):1642−1652 (in Chinese). doi: 10.12082/dqxxkx.2019.180603
|
施丽娟,冯婉悦,雷勇,等.2022. GPM日降水产品在中国大陆的准确性评估[J].气象,48(11):1428−1438. doi: 10.7519/j.issn.1000-0526.2022.091601
Shi L J, Feng W Y, Lei Y, et al. 2022. Accuracy evaluation of daily GPM precipitation product over Mainland China [J]. Meteorological Monthly,48(11):1428−1438 (in Chinese). doi:10.7519/j.issn.1000−0526.2022.091601
|
盛夏,石玉立,丁海勇.2021.青藏高原GPM降水数据空间降尺度研究[J].遥感技术与应用[J],36(3):571−580. doi: 10.11873/j.issn.1004-0323.2021.3.0571
Sheng X, Shi Y L, Ding H Y. 2021. Spatial downscaling of GPM precipitation over the Tibetan plateau [J]. Remote Sensing Technology and Application,36(3):571−580 (in Chinese). doi:10.11873/j.issn.1004−0323.2021.3.0571
|
温伯清,刘戎,庞国伟,等.2021. GPM卫星降水数据的降尺度研究——以陕西省为例[J].干旱区地理,44(3):786−795. doi: 10.12118/j.issn.1000–6060.2021.03.21
Wen B Q, Liu R, Pang G W, et al. 2021. Downscaling study of GPM satellite precipitation data: A case study of Shaanxi Province [J]. Arid Land Geography,44(3):786−795 (in Chinese). doi: 10.12118/j.issn.1000–6060.2021.03.21
|
魏鸣. 2023. 灾害性对流天气的双偏振多普勒雷达监测与机理研究[D]. 南京: 南京信息工程大学.
Wei M. 2023. Severe convective weather monitoring and analysis of the mechanisms with Dual-polarization doppler weather radar[D]. Nanjing: Nanjing University of Information and Technology
|
吴琼,仰美霖,窦芳丽.2017. GPM双频降水测量雷达对降雪的探测能力分析[J].气象,43(3):348−353. doi: 10.7519/j.issn.1000-0526.2017.03.011
Wu Q, Yang M L, Dou F L. 2017. Study of GPM dual frequency radar in detecting snow [J]. Meteorological Monthly,43(3):348−353 (in Chinese). doi:10.7519/j.issn.1000−0526.2017.03.011
|
王庆莉,韩玉江,郭斌,等.2019.近57年甘孜州气候干湿状况的时空演变[J].中国农业气象,40(7):435−443. doi: 10.3969/j.issn.1000-6362.2019.07.003
Wang Q L, Han Y J, Guo B, et al. 2019. Temporal and spatial evolution of climate dry and wet conditions in Ganzi in the past 57 years [J]. Chinese Journal of Agrometeorology,40(7):435−443. (in Chinese). doi:10.3969/j.issn.1000−6362.2019.07.003
|
王智敏,施丽娟,汪会,等.2022.基于GPM/DPR数据的北疆地区降雪云宏观结构和微物理特征分析[J].气象,48(9):1140−1152. doi: 10.7519/j.issn.1000-0526.2022.051602
Wang Z M, Shi L J, Wang H, et al. 2022. Analysis of macro structure and microphysical characteristics of snow clouds in Northern Xinjiang based on GPM/DPR Data [J]. Meteorological Monthly,48(9):1140−1152 (in Chinese). doi:10.7519/j.issn.1000−0526.2022.051602
|
杨荣芳,杨彬云,康晓甫.2022. TRMM 卫星降水数据在商洛地区的精度分析及订正[J].沙漠与绿洲气象,16(3):62−67. doi: 10.12057/j.issn.1002-0799.2022.03.010
Yang R F, Yang B Y, Kang X F. 2022. Accuracy analysis and correction of TRMM precipitation data in Shangluo area [J]. Desert and Oasis Meteorology,16(3):62−67. doi:10.12057/j.issn.1002−0799.2022.03.010
|
谢劭峰,魏朋志,黄良珂,等.2021.基于地理加权回归张力样条函数的广西PM2.5浓度插值[J].科学技术与工程,21(21):8807−8813. doi: 10.3969/j.issn.1671-1815.2021.21.011
Xie S F, Wei P Z, Huang L K, et al. 2021. Regional PM2.5 concentration interpolation based on GWR-TSF [J]. Science Technology and Engineering,21(21):8807−8813 (in Chinese). doi:10.3969/j.issn.1671−1815.2021.21.011
|
张奡祺,傅云飞.2018. GPM卫星双频测雨雷达探测降水结构的个例特征分析[J].大气科学,42(1):33−51. doi: 10.3878/j.issn.1006-9895.1705.16220
Zhang A Q, Fu Y F. 2018. The structural characteristics of precipitation cases detected by Dual-Frequency radar of GPM satellite [J]. Chinese Journal of Atmospheric Sciences,42(1):33−51 (in Chinese). doi:10.3878/j.issn.1006−9895.1705.16220
|
Cahill M, Mulligan G. 2007. Using geographically weighted regression to explore local crime patterns [J]. Social Science Computer Review,25(2):174−193. doi: 10.1177/0894439307298925
|
Immerzeel W W, Rutten M M, Droogers P. 2009. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula [J]. Remote Sensing of Environment,113(2):362−370. doi: 10.1016/j.rse.2008.10.004
|
Kamarianakis Y, Feidas H, Kokolatos G, et al. 2008. Evaluating remotely sensed rainfall estimates using nonlinear mixed models and geographically weighted regression [J]. Environmental Modelling and Software,23(12):1438−1447. doi: 10.1016/j.envsoft.2008.04.007
|
Lu X, Tang G, Wang X, et al. 2020. The development of a Two-Step merging and downscaling method for satellite precipitation products [J]. Remote Sensing,12(398):1−22. doi: 10.3390/rs12030398
|
Shen J, Liu, P, Xia, J, et al. 2022. Merging multisatellite and gauge precipitation based on geographically weighted regression and Long Short-Term Memory Network [J]. Remote Sensing,14(3939):1−20. doi: 10.3390/rs14163939
|
Sheng S, Chen H, Lin K, et al. 2023. An integrated framework for spatiotemporally merging multi-sources precipitation based on F-SVD and ConvLSTM [J]. Remote Sensing,15(3135):1−19. doi: 10.3390/rs15123135
|
Zhang W, Liu D, Zheng S, et al. 2020. Regional precipitation model based on Geographically and Temporally Weighted Regression Kriging [J]. Remote Sensing,12(2547):1−19. doi: 10.3390/rs12162547
|