Citation: | YANG Hui, ZHANG Yiping, CUI Liman, ZHANG Pu, SHI Yicong, LI Ke. 2024: Formation mechanism of a multi-stage severe convective weather event accompanied by local tornado in Henan. Torrential Rain and Disasters, 43(3): 299-312. DOI: 10.12406/byzh.2023-217 |
Henan encountered a multi-stage severe convective weather event (hereinafter referred to as "6.13" event) accompanied by local tornado on 13 June 2022. Using conventional observation data, regional automatic weather station data, satellite cloud images, Doppler weather radar data, ERA5 reanalysis data and other relevant data, we conducted an analysis on atmospheric circulation environment and the evolution characteristics of mesoscale systems for the "6.13" event. In addition, we discussed the initiation and maintenance mechanisms of convection in the different periods of this event and the radar characteristics of the local tornado in Puyang of Henan. Results are as follows. (1) The "6.13" event occurs under the northwest airflow behind the northeast cold vortex trough, and it is characterized by wide impact range, long duration and multiple types of disaster weather. (2) Radar detection results show that the severe convective systems in the "6.13" event passed through Henan in three periods one after another, and strong echoes in each period lasts for 8-9 hours, with the moving speed of 30-50 km·h-1. Most of the severe convective systems are multi-cells that all moved from northwest to southeast, with some of their areas overlapping under the guidance of northwest airflow. (3) Maintenance of the strong conditional instability and the moderate to strong vertical wind shear over Henan is an important cause for multi-stage severe convective weather in the "6.13" event lasting for a long time. The first period of local severe convection in Henan is mainly triggered by the convergence line or convergence center in the boundary layer formed by the combined effect of daily changes of wind field, local cold air activity, topographic distribution, while the second and third periods of severe convection are triggered by the gust front or outflow boundary accompanied by the surface mesoscale thunderstorm high formed by the strong developing convection systems in the surrounding area in the previous period or the same period. (4) The local tornado in Puyang is generated by a rapidly developing supercell storm. The hook echo and mesoscale cyclonic vortex appear 12 minutes after this supercell storm, and the tornado vortex characteristics (TVS) appear 18 minutes later. The hook echo and mesoscale cyclonic vortex are 6 minutes ahead of the occurrence of tornado, which can provide a reference information for early warning local tornadoes.
蔡雪薇, 谌芸, 沈新勇, 等. 2018. 冷涡对两类对流系统结构演变作用的个例模拟对比分析[J]. 气象, 44(6): 790-801. doi: 10.7519/j.issn.1000-0526.2018.06.007
Cai X W, Chen Y, Shen X Y, et al. 2018. Comparative simulation analysis of the effect of cold vortex on structural evolution of two types of mesoscale convective systems[J]. Meteorological Monthly, 44(6): 790-801 (in Chinese). doi: 10.7519/j.issn.1000-0526.2018.06.007
|
蔡雪薇, 谌芸, 沈新勇, 等. 2019. 冷涡背景下不同类型强对流天气的成因对比分析[J]. 气象, 45(3): 621-631. doi: 10.7519/j.issn.1000-0526.2019.05.003
Cai X W, Chen Y, Shen X Y, et al. 2019. Cause analysis of different types of severe convective weather under cold vortex background[J]. Meteorological Monthly, 45(3): 621-631 (in Chinese). doi: 10.7519/j.issn.1000-0526.2019.05.003
|
戴建华, 陶岚, 丁杨, 等. 2012. 一次罕见飑前强降雹超级单体风暴特征分析[J]. 气象学报, 70(4): 609-627. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201204003.htm
Dai J H, Tao L, Ding Y, et al. 2012. Case analysis of a large hail-producing severe supercell ahead of a squall line[J]. Acta Meteorologica Sinica, 70(4): 609-627 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201204003.htm
|
公衍铎, 郑永光, 罗琪. 2019. 冷涡底部一次弓状强飑线的演变和机理[J]. 气象, 45(4): 483-495. doi: 10.7519/j.issn.1000-0526.2019.04.004
Gong Y D, Zheng Y G, Luo Q. 2019. Evolution and development mechanisms of an arc-shaped strong squall line occurring along the south side of a cold vortex[J]. Meteorological Monthly, 45(4): 483-495 (in Chinese). doi: 10.7519/j.issn.1000-0526.2019.04.004
|
龚佃利, 王洪, 许焕斌, 等. 2021. 2019年8月16日山东诸城一次罕见强雹暴结构和大雹形成的观测分析[J]. 气象学报, 79(4): 674-688. doi: 10.11676/qxxb2021.032
Gong D L, Wang H, Xu H B, et al. 2021. Observational analysis of a rare and severe hailstorm cloud structure and large hailstones formation on 16 August 2019 in Zhucheng, Shandong province[J]. Acta Meteorologica Sinica, 79(4): 674-688 (in Chinese). doi: 10.11676/qxxb2021.032
|
李江波, 王宗敏, 王福侠, 等. 2011. 华北冷涡连续降雹的特征与预报[J]. 高原气象, 30(4): 1119-1131. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201104030.htm
Li J B, Wang Z M, Wang F X, et al. 2011. Characteristic and forecasting of continuous hail shooting processes caused by the North China cold vortex[J]. Plateau Meteorology, 30(4): 1119-1131 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201104030.htm
|
牛淑贞, 张一平, 席世平, 等. 2012. 基于加密探测资料解析2009年6月3日商丘强飑线形成机制[J]. 暴雨灾害, 31(3): 255-263. http://www.byzh.org.cn/article/id/2133
Niu S Z, Zhang Y P, Xi S P, et al. 2012. Analysis on the formation mechanism of a strong squall line based on intensive observation data in Shangqiu on June3, 2009[J]. Torrential Rainand Disasters, 31(3): 255-263(in Chinese) http://www.byzh.org.cn/article/id/2133
|
彭霞云, 章丽娜, 刘汉华, 等. 2022. 冷涡底部对流引起的杭州湾极端大风形成机制分析[J]. 气象, 48(6): 719-728. doi: 10.7519/j.issn.1000-0526.2022.051601
Peng X Y, Zhang L N, Liu H H, et al. 2022. Formation mechanism of extreme winds in Hangzhou Bay caused by convection at the bottom of cold vortex[J]. Meteorological Monthly, 48(6): 719-728(in Chinese). doi: 10.7519/j.issn.1000-0526.2022.051601
|
斯公望. 1989. 暴雨和强对流环境系统[M]. 北京: 气象出版社: 116.
Si G W. 1989. The environment system of heavy rain and severe convection[M]. Beijing: China Meteorological Press: 116 (in Chinese)
|
孙力. 1997. 东北冷涡持续活动的分析研究[J]. 大气科学, 21(3): 297-307. doi: 10.3878/j.issn.1006-9895.1997.03.06
Sun L. 1997. A study of the persistence activity of Northeast cold vortex in China[J]. Chinese Journal of Atmospheric Sciences, 21(3): 297-307 (in Chinese) doi: 10.3878/j.issn.1006-9895.1997.03.06
|
王国安, 乔春贵, 张一平, 等. 2023. 冷涡背景下河南风雹强对流天气统计特征[J]. 气象与环境科学, 46(4): 27-37. doi: 10.16765/j.cnki.1673-7148.2023.04.004
Wang G A, Qiao C G, Zhang Y P, et al. 2023. Statistical characteristics of thunderstorm gale and hail in Henan under the background of cold vortex[J]. Meteorological and Environmental Sciences, 46(4): 27-37 (in Chinese). doi: 10.16765/j.cnki.1673-7148.2023.04.004
|
王秀明, 俞小鼎, 周小刚, 等. 2012. "6.3"区域致灾雷暴大风形成及维持原因分析[J]. 高原气象, 31(2): 504-514. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201202025.htm
Wang X M, Yu X D, Zhou X G, et al. 2012. Study on the formation and evolution of "6.3" damage wind[J]. Plateau Meteorology, 31(2): 504-514 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201202025.htm
|
吴海英, 曾明剑, 蒋义芳, 等. 2021. 一次雹暴过程中对流系统演变特征的模拟分析[J]. 高原气象, 40(3): 569-579. doi: 10.7522/j.issn.1000-0534.2020.00016
Wu H Y, Zeng M J, Jiang Y F, et al. 2021. Simulation analysis of evolution characteristics of the convective system[J]. Plateau Meteorology, 40(3): 569-579 (in Chinese). doi: 10.7522/j.issn.1000-0534.2020.00016
|
吴蓁, 俞小鼎, 席世平, 等. 2011. 基于配料法的"08.06.03"河南强对流天气分析和短时预报[J]. 气象, 37(1): 48-58. doi: 10.7519/j.issn.1000-0526.2011.1.006
Wu Z, Yu X D, Xi S P, et al. 2011. Analysis of the 3 June 2008 Henan severe convection event with ingredients based method[J]. Meteorological monthly, 37(1): 48-58 (in Chinese). doi: 10.7519/j.issn.1000-0526.2011.1.006
|
武威, 牛淑贞. 2017. 2015年河南两次东北冷涡型强对流天气对比分析[J]. 暴雨灾害, 36(5): 397-409. doi: 10.3969/j.issn.1004-9045.2017.05.002
Wu W, Niu S Z. 2017. Comparative analysis on two severe convective weather events associated with northeast cold vortex in Henan in 2015[J]. Torrential Rain and Disasters, 36(5): 397-409 (in Chinese). doi: 10.3969/j.issn.1004-9045.2017.05.002
|
易笑园, 李泽椿, 李云, 等. 2010. 长生命史冷涡影响下持续对流性天气的环境条件[J]. 气象, 36(1): 17-25. doi: 10.7519/j.issn.1000-0526.2010.1.003
Yi X Y, Li Z C, Li Y, et al. 2010. Analysis of environmental conditions of continuous severe convective weather events caused by long life cold vortex[J]. Meteorological Monthly, 36(1): 17-25(in Chinese). doi: 10.7519/j.issn.1000-0526.2010.1.003
|
杨吉, 郑媛媛, 夏文梅, 等. 2020. 东北冷涡影响下江淮地区一次飑线过程的模拟分析[J]. 气象, 46(3): 357-366. doi: 10.7519/j.issn.1000-0526.2020.03.007
Yang J, Zheng Y Y, Xia W M, et al. 2020. Numerical analysis of a squall line case influenced by northeast cold vortex over Yangtze-Huaihe River Velley[J]. Meteorological Monthly, 46(3): 357-366(inChinese). doi: 10.7519/j.issn.1000-0526.2020.03.007
|
俞小鼎, 郑永光. 2020. 中国当代强对流天气研究与业务进展[J]. 气象学报, 78(3): 391-418. doi: 10.11676/qxxb2020.035
Yu X D, Zheng Y G. 2020. Advances in severe convective weather research and operational service in China[J]. Acta Meteorologica Sinica, 78(3): 391-418 (in Chinese). doi: 10.11676/qxxb2020.035
|
张弛, 王咏青, 沈新勇, 等. 2019. 东北冷涡背景下飑线发展机制的理论分析和数值研究[J]. 大气科学, 43(2): 361-371. doi: 10.3878/j.issn.1006-9895.1806.18101
Zhang C, Wang Y Q, Shen X Y, et al. 2019. Theoretical analysis and numerical study on the development mechanism of squall line in the Northeast Cold Vortex [J]. Chinese Journal of Atmospheric Sciences, 43(2): 361-371 (in Chinese). doi: 10.3878/j.issn.1006-9895.1806.18101
|
张桂莲, 常欣, 黄晓璐, 等. 2018. 东北冷涡背景下超级单体风暴环境条件与雷达回波特征[J]. 高原气象, 37(5): 1364-1374. doi: 10.7522/j.issn.1000-0534.2018.00068
Zhang G L, Chang X, Huang X L, et al. 2018. The environmental conditions and radar echo characteristics of the supercell storm under the background of the Northeast Cold Vortex[J]. Plateau Meteorology, 37(5): 1364-1374 (in Chinese). doi: 10.7522/j.issn.1000-0534.2018.00068
|
张立祥, 李泽椿. 2009. 东北冷涡研究概述[J]. 气候与环境研究, 14(2): 218-228. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200902012.htm
Zhang L X, Li Z C. 2009. A summary of research on cold vortex over Northeast China[J]. Climatic and Environmental Research, 14(2): 218-228 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200902012.htm
|
张一平, 吴蓁, 苏爱芳, 等. 2013. 基于流型识别和物理量要素分析河南强对流天气特征[J]. 高原气象, 32(5): 1492-1502. doi: 10.7522/j.issn.1000-0534.2012.00139
Zhang Y P, Wu Z, Su A F, et al. 2013. Analysis on severe convective weather characteristic in Henan based on flow pattern identification and physical elements[J]. Plateau Meteorology, 32(5): 1492-1502 (in Chinese). doi: 10.7522/j.issn.1000-0534.2012.00139
|
郑媛媛, 张雪晨, 朱红芳, 等. 2014. 东北冷涡对江淮飑线生成的影响研究[J]. 高原气象, 33(1): 261-269. doi: 10.7522/j.issn.1000-0534.2013.00005
Zhu Y Y, Zhang X C, Zhu H F, et al. 2014. Study of squall line genesis with Northeast cold vortex[J]. Plateau Meteorology, 33(1): 261-269(in Chinese). doi: 10.7522/j.issn.1000-0534.2013.00005
|
朱宇宁, 孟智勇, 雷蕾, 等. 2022. 中国东北冷涡背景下连续发生的中尺度对流系统的组织演变特征个例分析[J]. 北京大学学报(自然科学版), 58(3): 42-433. doi: 10.13209/j.0479-8023.2022.033
Zhu Y N, Meng Z Y, Lei L, et al. 2022. A case study on organization features of successive mesoscale convective systems in the environment of Northeast China Cold Vortex[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 58(3): 421-433(in Chinese). doi: 10.13209/j.0479-8023.2022.033
|
Bai L Q, Meng Z Y, Huang Y P, et al. 2019. Convection initiation resulting from the interaction between a quasi-stationary dryline and intersecting gust fronts: a case study[J]. Journal of Geophysical Research (Atmospheres), 124(5): 2379-2396. doi: 10.1175/JAMC-D-19-0081.1
|