Advanced Search
YANG Hui, ZHANG Yiping, CUI Liman, ZHANG Pu, SHI Yicong, LI Ke. 2024: Formation mechanism of a multi-stage severe convective weather event accompanied by local tornado in Henan. Torrential Rain and Disasters, 43(3): 299-312. DOI: 10.12406/byzh.2023-217
Citation: YANG Hui, ZHANG Yiping, CUI Liman, ZHANG Pu, SHI Yicong, LI Ke. 2024: Formation mechanism of a multi-stage severe convective weather event accompanied by local tornado in Henan. Torrential Rain and Disasters, 43(3): 299-312. DOI: 10.12406/byzh.2023-217

Formation mechanism of a multi-stage severe convective weather event accompanied by local tornado in Henan

More Information
  • Received Date: October 17, 2023
  • Accepted Date: December 15, 2023
  • Available Online: June 24, 2024
  • Henan encountered a multi-stage severe convective weather event (hereinafter referred to as "6.13" event) accompanied by local tornado on 13 June 2022. Using conventional observation data, regional automatic weather station data, satellite cloud images, Doppler weather radar data, ERA5 reanalysis data and other relevant data, we conducted an analysis on atmospheric circulation environment and the evolution characteristics of mesoscale systems for the "6.13" event. In addition, we discussed the initiation and maintenance mechanisms of convection in the different periods of this event and the radar characteristics of the local tornado in Puyang of Henan. Results are as follows. (1) The "6.13" event occurs under the northwest airflow behind the northeast cold vortex trough, and it is characterized by wide impact range, long duration and multiple types of disaster weather. (2) Radar detection results show that the severe convective systems in the "6.13" event passed through Henan in three periods one after another, and strong echoes in each period lasts for 8-9 hours, with the moving speed of 30-50 km·h-1. Most of the severe convective systems are multi-cells that all moved from northwest to southeast, with some of their areas overlapping under the guidance of northwest airflow. (3) Maintenance of the strong conditional instability and the moderate to strong vertical wind shear over Henan is an important cause for multi-stage severe convective weather in the "6.13" event lasting for a long time. The first period of local severe convection in Henan is mainly triggered by the convergence line or convergence center in the boundary layer formed by the combined effect of daily changes of wind field, local cold air activity, topographic distribution, while the second and third periods of severe convection are triggered by the gust front or outflow boundary accompanied by the surface mesoscale thunderstorm high formed by the strong developing convection systems in the surrounding area in the previous period or the same period. (4) The local tornado in Puyang is generated by a rapidly developing supercell storm. The hook echo and mesoscale cyclonic vortex appear 12 minutes after this supercell storm, and the tornado vortex characteristics (TVS) appear 18 minutes later. The hook echo and mesoscale cyclonic vortex are 6 minutes ahead of the occurrence of tornado, which can provide a reference information for early warning local tornadoes.

  • 蔡雪薇, 谌芸, 沈新勇, 等. 2018. 冷涡对两类对流系统结构演变作用的个例模拟对比分析[J]. 气象, 44(6): 790-801. doi: 10.7519/j.issn.1000-0526.2018.06.007

    Cai X W, Chen Y, Shen X Y, et al. 2018. Comparative simulation analysis of the effect of cold vortex on structural evolution of two types of mesoscale convective systems[J]. Meteorological Monthly, 44(6): 790-801 (in Chinese). doi: 10.7519/j.issn.1000-0526.2018.06.007
    蔡雪薇, 谌芸, 沈新勇, 等. 2019. 冷涡背景下不同类型强对流天气的成因对比分析[J]. 气象, 45(3): 621-631. doi: 10.7519/j.issn.1000-0526.2019.05.003

    Cai X W, Chen Y, Shen X Y, et al. 2019. Cause analysis of different types of severe convective weather under cold vortex background[J]. Meteorological Monthly, 45(3): 621-631 (in Chinese). doi: 10.7519/j.issn.1000-0526.2019.05.003
    戴建华, 陶岚, 丁杨, 等. 2012. 一次罕见飑前强降雹超级单体风暴特征分析[J]. 气象学报, 70(4): 609-627. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201204003.htm

    Dai J H, Tao L, Ding Y, et al. 2012. Case analysis of a large hail-producing severe supercell ahead of a squall line[J]. Acta Meteorologica Sinica, 70(4): 609-627 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201204003.htm
    公衍铎, 郑永光, 罗琪. 2019. 冷涡底部一次弓状强飑线的演变和机理[J]. 气象, 45(4): 483-495. doi: 10.7519/j.issn.1000-0526.2019.04.004

    Gong Y D, Zheng Y G, Luo Q. 2019. Evolution and development mechanisms of an arc-shaped strong squall line occurring along the south side of a cold vortex[J]. Meteorological Monthly, 45(4): 483-495 (in Chinese). doi: 10.7519/j.issn.1000-0526.2019.04.004
    龚佃利, 王洪, 许焕斌, 等. 2021. 2019年8月16日山东诸城一次罕见强雹暴结构和大雹形成的观测分析[J]. 气象学报, 79(4): 674-688. doi: 10.11676/qxxb2021.032

    Gong D L, Wang H, Xu H B, et al. 2021. Observational analysis of a rare and severe hailstorm cloud structure and large hailstones formation on 16 August 2019 in Zhucheng, Shandong province[J]. Acta Meteorologica Sinica, 79(4): 674-688 (in Chinese). doi: 10.11676/qxxb2021.032
    李江波, 王宗敏, 王福侠, 等. 2011. 华北冷涡连续降雹的特征与预报[J]. 高原气象, 30(4): 1119-1131. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201104030.htm

    Li J B, Wang Z M, Wang F X, et al. 2011. Characteristic and forecasting of continuous hail shooting processes caused by the North China cold vortex[J]. Plateau Meteorology, 30(4): 1119-1131 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201104030.htm
    牛淑贞, 张一平, 席世平, 等. 2012. 基于加密探测资料解析2009年6月3日商丘强飑线形成机制[J]. 暴雨灾害, 31(3): 255-263. http://www.byzh.org.cn/article/id/2133

    Niu S Z, Zhang Y P, Xi S P, et al. 2012. Analysis on the formation mechanism of a strong squall line based on intensive observation data in Shangqiu on June3, 2009[J]. Torrential Rainand Disasters, 31(3): 255-263(in Chinese) http://www.byzh.org.cn/article/id/2133
    彭霞云, 章丽娜, 刘汉华, 等. 2022. 冷涡底部对流引起的杭州湾极端大风形成机制分析[J]. 气象, 48(6): 719-728. doi: 10.7519/j.issn.1000-0526.2022.051601

    Peng X Y, Zhang L N, Liu H H, et al. 2022. Formation mechanism of extreme winds in Hangzhou Bay caused by convection at the bottom of cold vortex[J]. Meteorological Monthly, 48(6): 719-728(in Chinese). doi: 10.7519/j.issn.1000-0526.2022.051601
    斯公望. 1989. 暴雨和强对流环境系统[M]. 北京: 气象出版社: 116.

    Si G W. 1989. The environment system of heavy rain and severe convection[M]. Beijing: China Meteorological Press: 116 (in Chinese)
    孙力. 1997. 东北冷涡持续活动的分析研究[J]. 大气科学, 21(3): 297-307. doi: 10.3878/j.issn.1006-9895.1997.03.06

    Sun L. 1997. A study of the persistence activity of Northeast cold vortex in China[J]. Chinese Journal of Atmospheric Sciences, 21(3): 297-307 (in Chinese) doi: 10.3878/j.issn.1006-9895.1997.03.06
    王国安, 乔春贵, 张一平, 等. 2023. 冷涡背景下河南风雹强对流天气统计特征[J]. 气象与环境科学, 46(4): 27-37. doi: 10.16765/j.cnki.1673-7148.2023.04.004

    Wang G A, Qiao C G, Zhang Y P, et al. 2023. Statistical characteristics of thunderstorm gale and hail in Henan under the background of cold vortex[J]. Meteorological and Environmental Sciences, 46(4): 27-37 (in Chinese). doi: 10.16765/j.cnki.1673-7148.2023.04.004
    王秀明, 俞小鼎, 周小刚, 等. 2012. "6.3"区域致灾雷暴大风形成及维持原因分析[J]. 高原气象, 31(2): 504-514. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201202025.htm

    Wang X M, Yu X D, Zhou X G, et al. 2012. Study on the formation and evolution of "6.3" damage wind[J]. Plateau Meteorology, 31(2): 504-514 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201202025.htm
    吴海英, 曾明剑, 蒋义芳, 等. 2021. 一次雹暴过程中对流系统演变特征的模拟分析[J]. 高原气象, 40(3): 569-579. doi: 10.7522/j.issn.1000-0534.2020.00016

    Wu H Y, Zeng M J, Jiang Y F, et al. 2021. Simulation analysis of evolution characteristics of the convective system[J]. Plateau Meteorology, 40(3): 569-579 (in Chinese). doi: 10.7522/j.issn.1000-0534.2020.00016
    吴蓁, 俞小鼎, 席世平, 等. 2011. 基于配料法的"08.06.03"河南强对流天气分析和短时预报[J]. 气象, 37(1): 48-58. doi: 10.7519/j.issn.1000-0526.2011.1.006

    Wu Z, Yu X D, Xi S P, et al. 2011. Analysis of the 3 June 2008 Henan severe convection event with ingredients based method[J]. Meteorological monthly, 37(1): 48-58 (in Chinese). doi: 10.7519/j.issn.1000-0526.2011.1.006
    武威, 牛淑贞. 2017. 2015年河南两次东北冷涡型强对流天气对比分析[J]. 暴雨灾害, 36(5): 397-409. doi: 10.3969/j.issn.1004-9045.2017.05.002

    Wu W, Niu S Z. 2017. Comparative analysis on two severe convective weather events associated with northeast cold vortex in Henan in 2015[J]. Torrential Rain and Disasters, 36(5): 397-409 (in Chinese). doi: 10.3969/j.issn.1004-9045.2017.05.002
    易笑园, 李泽椿, 李云, 等. 2010. 长生命史冷涡影响下持续对流性天气的环境条件[J]. 气象, 36(1): 17-25. doi: 10.7519/j.issn.1000-0526.2010.1.003

    Yi X Y, Li Z C, Li Y, et al. 2010. Analysis of environmental conditions of continuous severe convective weather events caused by long life cold vortex[J]. Meteorological Monthly, 36(1): 17-25(in Chinese). doi: 10.7519/j.issn.1000-0526.2010.1.003
    杨吉, 郑媛媛, 夏文梅, 等. 2020. 东北冷涡影响下江淮地区一次飑线过程的模拟分析[J]. 气象, 46(3): 357-366. doi: 10.7519/j.issn.1000-0526.2020.03.007

    Yang J, Zheng Y Y, Xia W M, et al. 2020. Numerical analysis of a squall line case influenced by northeast cold vortex over Yangtze-Huaihe River Velley[J]. Meteorological Monthly, 46(3): 357-366(inChinese). doi: 10.7519/j.issn.1000-0526.2020.03.007
    俞小鼎, 郑永光. 2020. 中国当代强对流天气研究与业务进展[J]. 气象学报, 78(3): 391-418. doi: 10.11676/qxxb2020.035

    Yu X D, Zheng Y G. 2020. Advances in severe convective weather research and operational service in China[J]. Acta Meteorologica Sinica, 78(3): 391-418 (in Chinese). doi: 10.11676/qxxb2020.035
    张弛, 王咏青, 沈新勇, 等. 2019. 东北冷涡背景下飑线发展机制的理论分析和数值研究[J]. 大气科学, 43(2): 361-371. doi: 10.3878/j.issn.1006-9895.1806.18101

    Zhang C, Wang Y Q, Shen X Y, et al. 2019. Theoretical analysis and numerical study on the development mechanism of squall line in the Northeast Cold Vortex [J]. Chinese Journal of Atmospheric Sciences, 43(2): 361-371 (in Chinese). doi: 10.3878/j.issn.1006-9895.1806.18101
    张桂莲, 常欣, 黄晓璐, 等. 2018. 东北冷涡背景下超级单体风暴环境条件与雷达回波特征[J]. 高原气象, 37(5): 1364-1374. doi: 10.7522/j.issn.1000-0534.2018.00068

    Zhang G L, Chang X, Huang X L, et al. 2018. The environmental conditions and radar echo characteristics of the supercell storm under the background of the Northeast Cold Vortex[J]. Plateau Meteorology, 37(5): 1364-1374 (in Chinese). doi: 10.7522/j.issn.1000-0534.2018.00068
    张立祥, 李泽椿. 2009. 东北冷涡研究概述[J]. 气候与环境研究, 14(2): 218-228. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200902012.htm

    Zhang L X, Li Z C. 2009. A summary of research on cold vortex over Northeast China[J]. Climatic and Environmental Research, 14(2): 218-228 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200902012.htm
    张一平, 吴蓁, 苏爱芳, 等. 2013. 基于流型识别和物理量要素分析河南强对流天气特征[J]. 高原气象, 32(5): 1492-1502. doi: 10.7522/j.issn.1000-0534.2012.00139

    Zhang Y P, Wu Z, Su A F, et al. 2013. Analysis on severe convective weather characteristic in Henan based on flow pattern identification and physical elements[J]. Plateau Meteorology, 32(5): 1492-1502 (in Chinese). doi: 10.7522/j.issn.1000-0534.2012.00139
    郑媛媛, 张雪晨, 朱红芳, 等. 2014. 东北冷涡对江淮飑线生成的影响研究[J]. 高原气象, 33(1): 261-269. doi: 10.7522/j.issn.1000-0534.2013.00005

    Zhu Y Y, Zhang X C, Zhu H F, et al. 2014. Study of squall line genesis with Northeast cold vortex[J]. Plateau Meteorology, 33(1): 261-269(in Chinese). doi: 10.7522/j.issn.1000-0534.2013.00005
    朱宇宁, 孟智勇, 雷蕾, 等. 2022. 中国东北冷涡背景下连续发生的中尺度对流系统的组织演变特征个例分析[J]. 北京大学学报(自然科学版), 58(3): 42-433. doi: 10.13209/j.0479-8023.2022.033

    Zhu Y N, Meng Z Y, Lei L, et al. 2022. A case study on organization features of successive mesoscale convective systems in the environment of Northeast China Cold Vortex[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 58(3): 421-433(in Chinese). doi: 10.13209/j.0479-8023.2022.033
    Bai L Q, Meng Z Y, Huang Y P, et al. 2019. Convection initiation resulting from the interaction between a quasi-stationary dryline and intersecting gust fronts: a case study[J]. Journal of Geophysical Research (Atmospheres), 124(5): 2379-2396. doi: 10.1175/JAMC-D-19-0081.1

Catalog

    Article views (189) PDF downloads (82) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return