Citation: | YANG Peiqiang, CHEN Wei, AI Ze, et al. 2025. Numerical simulation study on local climate effects of Houguan Lake in Wuhan [J]. Torrential Rain and Disasters,44(1):82−92. DOI: 10.12406/byzh.2023-272 |
The roles of urban inner lakes in changing the urban ecology and human living environment are significant. To study the local climate effects of lakes in Wuhan, the routine observation data of national stations around Wuhan Houguan Lake and the NCEP/FNL reanalysis data during 2013 to 2022 were used in this study. The WRF numerical model was applied to investigate the possible mechanisms of the impact of Houguan Lake on the surface meteorological elements in the lake area and the surrounding areas during the typical winter and summer months (January and July 2013) separately. The results are as follows. (1) In the typical winter month, the warming effect of Houguan Lake is significant, while in the typical summer month, the warming effect is weak. The Houguan Lake shows a cold lake effect during the daytime while a warm lake effect at night. The decrease in the daily highest temperature and the increase in the daily lowest temperature leads to a decrease in the diurnal temperature difference. (2) Both the average wind speed and average daily maximum wind speed in the lake area are increased by Houguan Lake. In the typical winter month, the region and magnitude of the average wind speed and daily maximum wind speed in the Houguan Lake area and downwind area increase significantly more than that in the typical summer month. (3) There is a limited "wet island effect" in Houguan Lake in both the typical winter and summer months. The relative humidity decreases with the increasing distance from the lake boundary. Houguan Lake has a small impact on precipitation in the lake area and surrounding areas. (4) The temperature difference between the lake and the land leads to the diurnal shift of the wind direction in the lake area. The southeastern part of the lake is relatively larger and has a greater intensity and range of impact on temperature, wind speed, and relative humidity. In the typical winter month, Houguan Lake is affected by northerly airflow, which has a more significant impact on the temperature and relative humidity on the south shore of the lake. However, this feature is reversed in the typical summer month.
曹渐华,刘熙明,李国平,等.2015.鄱阳湖地区湖陆风特征及成因分析[J].高原气象,34(2):426−435. doi: 10.7522/j.issn.1000-0534.2013.00197
Cao J H, Liu X M, Li G P, et al. 2015. Analysis of the phenomenon of lake-land breeze in Poyang lake area [J]. Plateau Meteorology,34(2):426−435 (in Chinese). doi:10.7522/j.issn.1000−0534.2013.00197
|
方楠,阳坤,拉珠,等.2017. WRF湖泊模型对青藏高原纳木错湖的适用性研究[J].高原气象,36(3):610−618. doi: 10.7522/j.issn.1000-0534.2016.00038
Fang N, Yang K, La Z, et al. 2017. Research on the application of WRF-lake modeling at Nam Co lake on the Qinghai-Tibetan plateau [J]. Plateau Meteorology,36(3):610−618 (in Chinese). doi:10.7522/j.issn.1000−0534.2016.00038
|
何学敏.2012.艾比湖地区非生长季碳通量监测及响应机制初探[D]. 乌鲁木齐:新疆大学.
He X M.2012. Preliminary study on monitoring carbon fluxes and its response mechanisms during non-growing season in Ebinur Lake area [D]. Urumqi:Xinjiang University (in Chinese)
|
黄菊梅,覃鸿,袁泉,等.2024. 湖陆风对滨湖夏季气温和岳阳市城市热岛强度的影响[J].沙漠与绿洲气象,18(3):114−120. doi: 10.12057/i.issn.1002-0799.2024.03.015
Huang J M, Qin H, Yuan Q, et al. 2024. The influence of lake-land breeze on summer temperature in lake side area and the intensity of urban heat island in Yueyang city [J]. Desert and Oasis Meteorology,18(3):114−120 (in Chinese). doi:10.12057/i.issn.1002−0799.2024.03.015
|
李江林,陈玉春,吕世华,等.2009.利用RAMS模式对山谷城市兰州冬季湖泊效应的数值模拟[J].高原气象,28(5):955−965.
Li J L, Chen Y C, Lü S H, et al. 2009. Numerical simulation of winter lake effect in valley city of Lanzhou using RAMS model [J]. Plateau Meteorology,28(5):955−965 (in Chinese)
|
李婷婷,赵聆言,关艺蕾,等.2021.城市湖泊湿地周边建成环境温湿效应的时空分布特征-以武汉16个湖泊湿地为例[J].中国园林,37(3):106−111. doi: 10.19775/j.cla.2021.03.0106
Li T T, Zhao L Y, Guan Y L, et al. 2021. Temporal and spatial characteristics of cooling and humidifying effect of urban lake wetlands on the surroundings-a case study of 16 urban lake wetlands in Wuhan [J]. Chinese Landscape Architecture,37(3):106−111 (in Chinese). doi: 10.19775/j.cla.2021.03.0106
|
邱阳阳,刘寿东,王咏薇,等.2013.湖体对风、湿环境影响的数值模拟[J].科学技术与工程,13(14):3839−3845.
Qiu Y Y, Liu S D, Wang Y W, et al. 2013. Numerical simulation of lake body effect on wind speed and humidity environment [J]. Science Technology and Engineering,13(14):3839−3845 (in Chinese)
|
任晓倩,孙菽芬,陈文,等.2013.湖泊数值模拟研究现状综述[J].地球科学进展,28(3):347−356. doi: 10.11867/j.issn.1001-8166.2013.03.0347
Ren X Q, Sun S F, Chen W, et al. 2013. A review of researches on the lake numerical modeling [J]. Advances In Earth Science,28(3):347−356 (in Chinese). doi:10.11867/j.issn.1001−8166.2013.03.0347
|
任侠.2017.太湖对局地气象环境影响的模拟研究[D].南京:南京信息工程大学.
Ren X. 2017. Simulation studies for Lake Taihu effect on local meteorological environment [D]. Nanjing:Nanjing University of Information Science & Technology (in Chinese)
|
苏东生,文莉娟,赵林,等.2019.青海湖夏秋季局地气候效应数值模拟研究[J].高原气象,38(5):944−958. doi: 10.7522/j.issn.1000-0534.2018.00125
Su D S, Wen L J, Zhao L, et al. 2019. Numerical simulation of seasonal local climate effect in Qinghai Lake [J]. Plateau Meteorology,38(5):944−958 (in Chinese). doi:10.7522/j.issn.1000−0534.2018.00125
|
唐滢,黄安宁,田栗嵘,等.2016.夏季太湖局地气候效应的数值模拟研究[J].气象科学,36(5):647−654. doi: 10.3969/2015jms.0081
Tang Y, Huang A N, Tian L R, et al. 2016. Numerical study on summer local climatic effect over Taihu Lake [J]. Journal of the Meteorological Sciences,36(5):647−654 (in Chinese). doi: 10.3969/2015jms.0081
|
田宇.2023.夏季静稳天气下大型城中湖气候调节服务功能模拟研究-以武汉东湖为例[D].武汉:华中农业大学.
Tian Y. 2023. Simulation study on cuimate regulation service function of large urban lakes in summer stable weather: A case study of East lake in wuhan [D]. Wuhan:Huazhong Agricultural University (in Chinese). doi: 10.27158/d.cnki.ghznu.2023.002190
|
吴阳. 2018. 夏季青藏高原湖泊群区域气候效应及其作用机理的数值模拟研究[D]. 南京:南京大学.
Wu Y. 2018. Numerical study of the regional climate effect of lake clusters in Tibetan Plateau and its working mechanisms during summer [D]. Nanjing:Nanjing University (in Chinese). doi: 10.27235/d.cnki.gnjiu.2018.000072
|
谢慧,曾伟.2021.武汉市城镇化与生态环境耦合协调发展研究[J].湖北农业科学,60(4):86−91. doi: 10.14088/j.cnki.issn0439-8114.2021.04.018
Xie H, Zeng W. 2021. Study on the coupling and coordinating development of urbanization and ecological environment in Wuhan city [J]. Hubei Agricultural Sciences,60(4):86−91 (in Chinese). doi:10.14088/j.cnki.issn0439−8114.2021.04.018
|
谢婧. 2022. 基于“源-流-汇”综合分析的武汉市湖泊局地气候效应研究[D]. 武汉:华中农业大学.
Xie J. 2022. Research on local climate effect of lakes in Wuhan based on "Source-Flow-Sink" analysis [D]. Wuhan:Huazhong Agricultural University (in Chinese)
|
邢佩,杨若子,杜吴鹏,等.2023. 1961-2017年华北地区温度相关高影响天气气候事件变化特征分析[J].沙漠与绿洲气象,17(4):61−68. doi: 10.12057/j.issn.1002-0799.2023.04.009
Xing P, Yang R Z, Du W P, et al. 2023. Characteristics of temperature-related high-impact weather and climate events in North China from 1961 to 2017 [J]. Desert and Oasis Meteorology,17(4):61−68 (in Chinese). doi:10.12057/j.issn.1002−0799.2023.04.009
|
熊洁,李俊,王明欢.2023. WRF模式中不同随机扰动方案在暴雨对流尺度集合预报中的对比评估[J].暴雨灾害,42(3):241-251.
Xiong J, Li J, Wang M H.2023. Comparative evaluation of different stochastic perturbation schemes within the convection-allowing ensemble forecast of rainstorm in WRF model [J]. Torrential Rain and Disasters,42(3):241-251 (in Chinese). doi: 10.12406/byzh.2022−191
|
许鲁君,刘辉志.2015.云贵高原洱海湖泊效应的数值模拟[J].气象学报,73(4):789−802. doi: 10.11676/qxxb2015.047
Xu L J, Liu H Z. 2015. Numerical simulation of the lake effect of Erhai in the Yunnan-Guizhou plateau area [J]. Acta Meteorologica Sinica,73(4):789−802 (in Chinese). doi: 10.11676/qxxb2015.047
|
许鲁君,刘辉志,曹杰.2014.大理苍山-洱海局地环流的数值模拟[J].大气科学,38(6):1198−1210. doi: 10.3878/j.issn.1006-9895.1401.13293
Xu L J, Liu H Z, Cao J. 2014. Numerial simulation of local circulation over the Cangshan mountain- Erhai Lake area in Dali, Southwest China [J]. Chinese Journal of Atmospheric Sciences,38(6):1198−1210 (in Chinese). doi:10.3878/j.issn.1006−9895.1401.13293
|
闫立娟,郑绵平,魏乐军.2016.近40年来青藏高原湖泊变迁及其对气候变化的响应[J].地学前缘,23(4):310−323. doi: 10.13745/j.esf.2016.04.027
Yan L J, Zheng M P, Wei L J. 2016. Change of the lakes in Tibetan plateau and its response to climate in the past forty years [J]. Earth Science Frontiers,23(4):310−323 (in Chinese). doi: 10.13745/j.esf.2016.04.027
|
杨水化,彭正洪,焦洪赞,等.2020.城市富营养化湖泊的外源污染负荷与贡献解析-以武汉市后官湖为例[J].湖泊科学,32(4):941−951. doi: 10.18307/2020.0404
Yang S H, Peng Z H, Jiao H Z, et al. 2020. External pollution source load and contribution of urban eutrophic lakes-Taking Houguan Lake of Wuhan as an example [J]. Journal of Lake Sciences,32(4):941−951 (in Chinese). doi: 10.18307/2020.0404
|
张伟,陈存友,胡希军,等.2022.基于计算机流体力学的城市近郊湖泊“湿岛效应”情景模拟研究: 以长沙市同升湖为例[J].生态与农村环境学报,38(5):670−680. doi: 10.19741/j.issn.1673-4831.2021.0287
Zhang W, Chen C Y, Hu X J, et al. 2022. Study on the “wet island effect” scenario simulation of lakes in suburbs based on computer fluid mechanics: A case study of Tongsheng Lake in Changsha city [J]. Journal of Ecology and Rural Environment,38(5):670−680 (in Chinese). doi:10.19741/j.issn.1673−4831.2021.0287
|
中华人民共和国住房和城乡建设部. 2010. JGJ 134-2010 夏热冬冷地区居住建筑节能设计标准[S].
Ministry of Housing and Urban-Rural Development of the People's Republic of China. 2010. JGJ 134-2010 Design standard for energy effciency of residential buildingsin hot summer and cold winter zone [S] (in Chinese)
|
周志敏,王斌,郭英莲,等.2023.湖北一次梅雨期暴雨过程的数值模拟及云微物理特征分析[J].暴雨灾害,42(4):372−383. doi: 10.12406/byzh.2023-062
Zhou Z M, Wang B, Guo Y L, et al. 2023. Numerical simulation and analysis on cloud microphysical characteristics during a Meiyu heavy rainfall event in Hubei province [J]. Torrential Rain and Disasters,42(4):372−383 (in Chinese). doi:10.12406/byzh.2023−062
|
朱娟,张立凤,张铭.2022.盛夏苏北地区一次飑线过程的数值模拟研究[J].暴雨灾害,41(1):15−23. doi: 10.3969/j.issn.1004-9045.2022.01.002
Zhu J, Zhang L F, Zhang M. 2022. Numerical simulation and study of a squall in the north of Jiangsu in midsummer [J]. Torrential Rain and Disasters,41(1):15−23 (in Chinese). doi:10.3969/j.issn.1004−9045.2022.01.002
|
Crosman T E, Horel D J. 2012. Idealized large-eddy simulations of sea and lake breezes: Sensitivity to lake diameter, heat flux and stability [J]. Boundary-Layer Meteorology,44:309−328. doi:10.1007/s10546−012−9721−x
|
Dugas B, Winger K, Laprise R, et al. 2012. Interactive lakes in the Canadian Regional Climate Model, version 5: the role of lakes in the regional climate of North America [J]. Tellus: Series A, Dynamic Meteorology and Oceanography,64(1):1-22. doi: 10.3402/tellusa.v64i0.16226
|
Stockdale T, Potes M, Boussetta S, et al. 2012. On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model [J]. Tellus: Series A, Dynamic Meteorology and Oceanography,64(1):1-12. doi: 10.3402/tellusa.v64i0.15829
|
Zhang X Y, Huang J P, Li G, et al. 2019. Improving lake-breeze simulation with WRF nested LES and lake model over a large shallow lake [J]. Journal of Applied Meteorology and Climatology,58:1689−1708. doi:10.1175/jamc−d−18−0282.1
|