Citation: | PENG Xiayun, LUO Ling, LI Wenjuan, et al. 2025. Analysis of convective characteristics and development mechanisms of a late-autumn elevated thunderstorm [J]. Torrential Rain and Disasters,44(2):197−206. DOI: 10.12406/byzh.2024-035 |
Using multiple datasets including ERA5 reanalysis, lightning locators, dual-polarization radars, and microwave radiometers, this study analyzedthe environmental background, dynamic conditions, instability mechanisms, and radar characteristics of an elevated late-autumn thunderstorm in the northern Zhejiang region on 28 November 2022. The results are as follow. (1) This was an elevated convective event occurring ahead of a warm front, which was mainly influenced by the 500 hPa upper-level trough and low-level southwesterly jet stream. The vorticity advection increasing with height in front of the shortwave trough caused strong upward motion. The strong and deep convergence in the front of the low-level jet stream, and the strong vertical wind shear provided favorable dynamic conditions for the development of convection. (2) Mid-level dry air and strong downdraft convective available potential energy (DCAPE) contributed to the formation of intense downdrafts. The joint action of conditional instability and conditional symmetry instability provided sufficient energy conditions for the development of convection, among which conditional instability played a major role. (3) Dual-polarization radar data analysis showed that, during the peak stage, the 50 dBz strong echoes reached the −20 ℃ layer, and above the 0 ℃ layer, ZDR columns and KDP columns existed. The coexistence of strong updrafts and a large number of graupel particles was conducive to the frequent occurrence of lightning. (4) With the rapid descending of the reflectivity core, the rear inflow jet formed and dropped to the surface through the reflectivity core of the storm, indicating that the strong downdraft generated by convection could penetrate through the inversion layer, transporting high momentum air to the ground and generating intense surface winds. Minor ground temperature changes occured before and after the convection, indicating that the negative buoyancy effect of the downdraft at low levels was small. The hydrometeor classification results indicate a large presence of hail particles in low levels.The equivalent hydrometeor load estimation showed that the drag effect of large particles, like hail, could have a strong enhancement effect on the downdrafts.
曹舒娅,张静,施丹平,等.2018.江苏近10 a 高架雷暴特征分析[J].气象科学,38(5):681−691. doi: 10.3969/2018jms.0027
Cao S Y, Zhang J, Shi D P, et al. 2018. Analysis on the elevated thunderstorms in the past decade in Jiangsu [J]. Journal of the Meteorological Sciences,38(5):681−691 (in Chinese) doi: 10.3969/2018jms.0027
|
陈军,李小兰,喻义军,等.2017.贵州铜仁一次大范围高架雷暴降雹天气过程分析[J].干旱气象,35(4):649−656. doi: 10.11755/j.issn.1006-7639(2017)-04-0649
Chen J, Li X L, Yu Y J, et al. 2017. Analysis on a large range elevated thunderstorm hail weather process in Tongren of Guizhou [J]. Journal of Arid Meteorology,35(4):649−656 (in Chinese). doi:10.11755/j.issn.1006−7639(2017)−04−0649
|
陈淑琴,章丽娜,曹宗元,等.2019.华东地区冷季两次高架对流个例分析[J].气象与环境科学,42(4):63−73. doi: 10.16765/j.cnki.1673-7148.2019.04.010
Chen S Q, Zhang L N, Cao Z Y, et al. 2019. Analysis on two elevated convection processes in eastern China in cold season [J]. Meteorological and Environmental Sciences,42(4):63−73 (in Chinese). doi:10.16765/j.cnki.1673−7148.2019.04.010
|
杜佳,杨成芳,戴翼,等.2019.北京地区4月一次罕见暴雪的形成机制分析[J].气象,45(10):1363−1374. doi: 10.7519/j.issn.1000-0526.2019.10.003
Du J, Yang C F, Dai Y, et al. 2019. Formation mechanism of an infrequent blizzard in Beijing in April [J]. Meteorological monthly,45(10):1363−1374 (in Chinese). doi:10.7519/j.issn.1000−0526.2019.10.003
|
黄小刚,费建芳,孙吉明,等.2017. 2013年冬季长江中下游地区一次高架雷暴过程的成因分析[J].气象学报,75(3):429−441. doi: 10.11676/qxxb2017.031
Huang X G, Fei J F, Sun J M, et al. 2017. Analysis on the formation mechanism of an elevated thunderstorm over the middle and lower Yangtze Basin in February 2013 [J]. Acta Meteorologica Sinica,75(3):429−441 (in Chinese). doi: 10.11676/qxxb2017.031
|
李博,王玮,刘飞,等.2023.山东初冬一次极端降水和大风天气成因分析[J].沙漠与绿洲气象,17(4):30−37 (in Chinese). doi: 10.12057/j.issn.1002-0799.2023.04.005
Li B, Wang W, Liu F, et al. 2023. Causes of an extremely precipitation and gale in shandong province in early winter [J]. Desert and Oasis Meteorology,17(4):30−37 (in Chinese). doi:10.12057/j.issn.1002−0799.2023.04.005
|
李典南,许东蓓,苟尚,等.2019.甘肃中部一次冷锋后高架雷暴天气过程综合诊断[J].干旱气象,37(5):809−816. doi: 10.11755/j.issn.1006-7639(2019)-05-0809
Li D N, Xu D B, Gou S, et al. 2019. Comprehensive analysis of an elevated thunderstorm process behind cold front in the central of Gansu Province [J]. Journal of Arid Meteorology,37(5):809−816 (in Chinese). doi:10.11755/j.issn.1006−7639(2019)−05−0809
|
李姝霞,袁小超,王国安,等.2023.一次暴雪过程的高架雷暴环境条件及雷达特征[J].暴雨灾害,42(5):541−553. doi: 10.12406/byzh.2022-109
Li S X, Yuan X C, Wang G A, et al. 2023. Synoptic conditions and radar characteristics for elevated thunderstorm during a snowstorm event in Henan Province [J]. Torrential Rain and Disasters,42(5):541−553 (in Chinese). doi:10.12406/byzh.2022−109
|
刘晓岳,于海鹏,盛夏,等.2020.半干早区一次罕见“雷打雷”天气形成机制分析[J].气象,46(12):1596−1607. doi: 10.7519/j.issn.1000-0526.2020.12.007
Liu X Y, Yu H P, Sheng X, et al. 2020. Mechanism analysis of a rare "thunder snow" process in semi-arid area [J]. Meteorological monthly,46(12):1596−1607 (in Chinese). doi:10.7519/j.issn.1000−0526.2020.12.007
|
刘洲洋,俞小鼎,王秀明,等.2018.中国泛华北地区冷季高架对流特征气候统计分析[J].气象,44(2):258−267. doi: 10.7519/j.issn.1000-0526.2018.02.005
Liu Z Y, Yu X D, Wang X M, et al. 2018. Climatology of cold season elevated convection in northern China [J]. Meteorological Monthly,44(2):258−267 (in Chinese). doi:10.7519/j.issn.1000−0526.2018.02.005
|
盛杰,毛冬艳,沈新勇,等.2014.我国春季冷锋后的高架雷暴特征分析[J].气象,40(9):1058−1065. doi: 10.7519/j.issn.1000-0526.2014.09.003
Sheng J, Mao D Y, Shen X Y, et al. 2014. Analysis on characteristics of elevated thunderstorms behind cold fronts in China during spring [J]. Meteorological monthly,40(9):1058−1065 (in Chinese). doi:10.7519/j.issn.1000−0526.2014.09.003
|
孙凌峰,郭学良,孙立潭,等.2003.武汉“6·22”空难下击暴流的三维数值模拟研究[J].大气科学,27(6):1077−1092. doi: 10.3878/j.issn.1006-9895.2003.06.11
Sun L F, Guo X L, Sun L T, et al. 2003. A numerical study of the airplane disaster producing microburst on 22 June 2000 in Wuhan [J]. Chinese Journal of Atmospheric Science,27(6):1077−1092 (in Chinese). doi:10.3878/j.issn.1006−9895.2003.06.11
|
唐明晖,陈龙,陈鹤,等.2023.基于双偏振雷达资料的洞庭湖区一次强对流过程的分阶段特征分析[J].暴雨灾害,42(6):692−703. doi: 10.12406/byzh.2022-170
Tang M H, Chen L, Chen H, et al. 2023. Staged characteristics analysis of a severe convection over the Dongting Lake area based on dual-polarization Doppler weather radar data [J]. Torrential Rain and Disasters,42(6):692−703 (in Chinese). doi:10.12406/byzh.2022−170
|
王艳春,尉英华,张楠,等.2022. 2017年夏季天津一次下击暴流事件的成因初探[J].暴雨灾害,41(5):556−563. doi: 10.12406/byzh.2021-112
Wang Y C, Wei Y H, Zhang N,et al. 2022. Preliminary study on the causes of a downburst event in Tianjin in the summer of 2017 [J]. Torrential Rain and Disasters,41(5):556−563 (in Chinese). doi:10.12406/byzh.2021−112
|
俞小鼎,周小刚,王秀明.2012.雷暴与强对流临近天气预报技术进展[J].气象学报,70(3):331−337. doi: 10.11676/qxxb2012.030
Yu X D, Zhou X G, Wang X M. 2012. The advances in the nowcasting techniques on thunderstorms and severe convection [J]. Acta Meteorologica Sinica,70(3):311−337 (in Chinese). doi: 10.11676/qxxb2012.030
|
俞小鼎,周小刚,王秀明.2016.中国冷季高架对流个例初步分析[J].气象学报,74(6):902−918. doi: 10.11676/qxxb2016.075
Yu X D, Zhou X G, Wang X M. 2016. A preliminary case study of elevated convection in China [J]. Acta Meteorologica sinica,74(6):902−918 (in Chinese). doi: 10.11676/qxxb2016.075
|
俞小鼎,王秀明,李万莉,等.2020.雷暴与强对流临近预报[M]. 北京: 气象出版社:294—295.
Yu X D, Wang X M, Li W L, et al. 2020. The nowcasting on thunderstorms and severe convection [M]. Beijing: China Meteorological Press: 294-295 (in Chinese)
|
章丽娜,周小刚,夏扬.2018.关于业务上应用条件对称不稳定相关问题的讨论[J].气象学报,76(5):824−832. doi: 10.11676/qxxb2018.028
Zhang L N, Zhou X G, Xia Y. 2018. A discussion on conditional symmetric instability in operational application [J]. Acta Meteorologica Sinica,76(5):824−832 (in Chinese). doi: 10.11676/qxxb2018.028
|
张一平,俞小鼎,孙景兰,等.2014. 2012年早春河南一次高架雷暴天气成因分析[J].气象,40(1):48−58. doi: 10.7519/j.issn.1000-0526.2014.01.006
Zhang Y P, Yu X D, Sun J L, et al. 2014. Analysis on weather causes of an elevated thunderstorm in Henan in early spring 2012 [J]. Meteorological monthly,40(1):48−58 (in Chinese). doi:10.7519/j.issn.1000−0526.2014.01.006
|
张伟,陈琳,黄惠镕,等.2023.闽西南地区一次高架雷暴中尺度特征分析[J].热带气象学报,39(1):55−65. doi: 10.16032/j.issn.1004-4965.2023.006
Zhang W, Chen L, Huang H R, et al. 2023. Mesoscale structure analysis of an elevated thunderstorm in southwest Fujian [J]. Journal of Tropical Meteorology,39(1):55−65 (in Chinese). doi:10.16032/j.issn.1004−4965.2023.006
|
Bernardet L R, Cotton W R. 1998. Multiscale evolution of a derecho producing mesoscale convective system [J]. Monthly Weather Review,126(11):2991−3015. doi:10.1175/1520−0493(1998)126<2991:MEOADP>2.0.CO;2
|
Borchardt B S, Sherburn K D, Schumacher R S. 2024. Radar signatures and surface observations of elevated convection associated with damaging surface winds [J]. Weather and Forecasting,39(6):943−963. doi:10.1175/WAF−D−23−0171.1
|
Bryan G H, Weisman M L. 2006. Mechanisms for the production of severe surface winds in a simulation of an elevated convective system [C].//23rd Conf on Severe Local Storms, St. Louis, MO, American Meteorogical Society, 7.5.
|
Colman B R. 1990a. Thunderstorms above frontal surfaces in environments without positive CAPE. Part I: a climatology [J]. Monthly Weather Review,118(5):1103−1121. doi:10.1175/1520−0493(1990)118<1103:TAFSIE>2.0.CO;2
|
Colman B R. 1990b. Thunderstorms above frontal surfaces in environments without positive CAPE. Part II: organization and instability mechanisms [J]. Monthly Weather Review,118(5):1123−1144. doi:10.1175/1520−0493(1990)118<1123:TAFSIE>2.0.CO;2
|
Deierling W, Petersen W A, Latham J, et al. 2008. The relationship between lightning activity and ice fluxes in thunderstorms [J]. Journal of Geophysical Research,113:D15210. doi: 10.1029/2007JD009700
|
Grant B N. 1995. Elevated cold sector severe thunder storms: a preliminary study [J]. National Weather Digest,19(4):25−31
|
Horgan K L, Schultz D M, Hales Jr J E, et al. 2007. A five-year climatology of elevated severe convective storms in the United States east of the Rocky Mountains [J]. Weather and Forecasting,22(5):1031−1042. doi:10.1175 /WAF1032.1 doi: 10.1175/WAF1032.1
|
Helmus J J, Collis S M. 2016. The Python ARM Radar Toolkit (Py-ART), a Library for working with weather radar data in the Python programming language [J]. Journal of Open Research Software,4(1): e25. doi:10.5334 /jors.119
|
Macintosh C W, Parker M D. 2017. The 6 May 2010 elevated supercell during VORTEX2 [J]. Monthly Weather Review,145(7):2635−2657. doi:10.1175/MWR−D−16−0329.1
|
Reif D W, Bluestein H B. 2017. A 20-year climatology of nocturnal convection initiation over the central and southern Great Plains during the warm season [J]. Monthly Weather Review,145(5):1615−1639. doi:10.1175/MWR−D−16−0340.1
|
Schmidt J M, Cotton W R. 1989. A high plains squall line associated with severe surface winds [J]. Journal of Atmospheric Science,46(3):281−302. doi:10.1175/1520−0469(1989)046<0281:AHPSLA>2.0.CO;2
|
Schumacher R S, Childs S J, Adams-Selin R D. 2023. Intense surface winds from gravity wave breaking in simulations of a destructive microburst [J]. Monthly Weather Review,151(3):775−793. doi:10.1175/MWR−D−220103.1
|