Citation: | LIU Huosheng, YAO Chaolong, WANG Ruili, et al. xxxx. Meteorological drought monitoring combined with GNSS precipitable water vapor and measured precipitation: a case study of GNSS stations in Hubei Province [J]. Torrential Rain and Disasters,44(x):xx-xx. DOI: 10.12406/byzh.2024-073 |
The atmospheric precipitable water vapor (PWV) derived from Global Navigation Satellite System (GNSS) provides new data for monitoring meteorological disasters such as heavy rainfall. In this study, we constructed the monthly Precipitation Efficiency (PE) meteorological drought index from a comprehensive perspective of atmospheric water vapor and precipitation, based on daily PWV and precipitation data from five GNSS stations in Hubei Province during 2011-2022. The characteristics and advantages of the index were verified using the Standardized Precipitation Index (SPI), Meteorological Drought Composite Index (MCI), and Standardized Precipitation Evapotranspiration Index (SPEI). The results are as follows. (1) The variation of atmospheric water vapor in Hubei Province has good spatial consistency, while precipitation shows strong local variation characteristics. Among the five GNSS stations, the correlation coefficients of PWV are all greater than 0.98, while the correlation coefficients of rainfall are between 0.66 and 0.90. A combination of the two factors could reflect the comprehensive variations in large-scale PWV and local precipitation during the drought periods. (2) PE index shows strong correlations with SPI, MCI, and SPEI (with correlation coefficients ranging from 0.56 to 0.85), indicating the effectiveness of PE in monitoring drought, but still existing differences in reflecting the severity grades and spatial distributions. (3) The correlation coefficient of PE between GNSS stations (0.50~0.81) is the smallest among the four indexes, indicating that the PE meteorological drought index can reflect the difference in local drought characteristics. Using the PE meteorological drought index to monitor drought events at GNSS stations in Hubei provinces shows that during 2011-2022, the highest frequency of severe drought appeared in Xiangfan, while the drought events in the Wuhan site frequently occurred in the autumn season and lasted a long time. Results confirmed the effectiveness and advantages of the PE drought indices constructed from GNSS PWV in characterizing drought evolution and spatial distribution.
陈家宁,孙怀卫,王建鹏,等.2020.综合气象干旱指数改进及其适用性分析[J].农业工程学报,36(16):71−77. doi: 10.11975/j.issn.1002-6819.2020.16.009
Chen J N, Sun H W, Wang J P, et al. 2020. Improvement of comprehensive meteorological drought index and its applicability analysis [J]. Transactions of the Chinese Society of Agricultural Engineering,36(16):71−77 (in Chinese). doi:10.11975/j.issn.1002−6819.2020.16.009
|
陈思,钟无双,Muhammad W,等.2021.基于修正复合干旱指数的干旱综合监测及其在湖北省的应用[J].长江流域资源与环境,30(11):2726−2735. doi: 10.11870/cjlyzyyhj.202111015
Chen S, Zhong W S, Muhammad W, et al. 2021. A modified composite drought index for comprehensive drought monitoring and its applications in hubei province [J]. Resources and Environment in the Yangtze Basin,30(11):2726−2735 (in Chinese). doi: 10.11870/cjlyzyyhj.202111015
|
范进进,秦鹏程,史瑞琴,等.2022.气候变化背景下湖北省高温干旱复合灾害变化特征[J].干旱气象,40(5):780−790. doi: 10.11755/j.issn.1006-7639(2022)-05-0780
Fan J J, Qin P C, Shi R Q, et al. 2022. Characteristics of compound hot and drought disasters in Hubei under the background of climate change [J]. Journal of Arid Meteorology,40(5):780−790 (in Chinese). doi:10.11755/j.issn.1006−7639(2022)−05−0780
|
贺程程,秦鹏程,刘诗慧,等.2024.近62 a湖北省旱涝特征分析[J].暴雨灾害,43(1):93−100. doi: 10.12406/byzh.2022-201
He C C, Qin P C, Liu S H, et al. 2024. Analysis of drought and flood characteristics in Hubei Province in recent 62 years [J]. Torrential Rain and Disasters,43(1):93−100 (in Chinese). doi:10.12406/byzh.2022−201
|
李国平,黄丁发.2004.GPS遥感区域大气水汽总量研究的回顾与展望[J].气象科技,32(4):201−205. doi: 10.19517/j.1671-6345.2004.04.001
Li G P, Huang D F. 2004. Reviews and prospects of researched on remote sensing of regional atmospheric water vapor using ground-based GPS [J]. Meteorological Science and Technology,32(4):201−205 (in Chinese). doi:10.19517/j.1671−6345.2004.04.001
|
刘可群,李仁东,刘志雄,等.2012.基于CI指数的湖北干旱及其变化特征分析[J].长江流域资源与环境,21(10):1274−1280.
Liu K Q, Li R D, Liu Z X, et al. 2012. Characteristics and variations of drought in Hubei based on comprehensive meteorological drought index [J]. Resources and Environment in the Yangtze Basin,21(10):1274−1280 (in Chinese)
|
缪驰远,韩静雅,苟娇娇. 2023. 中国逐日降水数据集(1961-2022,0.1°/0.25°/0.5°)[DB]. 国家青藏高原数据中心.
Miao C Y, Han J Y, Gou J J. 2023. A new daily gridded precipitation dataset for the Chinese mainland based on gauge observations [DB]. National Tibetan Plateau/Third Pole Environment Data Center (in Chinese). doi: 10.11888/Atmos.tpdc.300523
|
秦大河.2009.气候变化与干旱[J].科技导报,27(11):3. doi: 10.3321/j.issn:1000-7857.2009.11.001
Qing D H. 2009. Climate change and drought [J]. Science and technology review,27(11):3 (in Chinese). doi:10.3321/j.issn:1000−7857.2009.11.001
|
秦鹏程,刘敏,万素琴,等.2014.气象干旱综合监测指数在湖北的本地化应用及其适用性分析[J].气象科技,42(2):341−347. doi: 10.3969/j.issn.1671-6345.2014.02.028
Qin P C, Liu M, Wan S Q, et al. 2014. Modification and applicability evaluation of comprehensive monitoring index of meteorological drought in Hubei province [J]. Meteorological Science and Technology,42(2):341−347 (in Chinese). doi:10.3969/j.issn.1671−6345.2014.02.028
|
邵末兰,向纯怡.2009.湖北省主要气象灾害分类及其特征分析[J].暴雨灾害,28(2):179−185. doi: 10.3969/j.issn.1004-9045.2009.02.015
Shao M L, Xiang C Y. 2009. Analysis and classification of meteorological disasters in Hubei province [J]. Torrential Rain and Disasters,28(2):179−185 (in Chinese). doi:10.3969/j.issn.1004−9045.2009.02.015
|
王海燕,温泉沛,王珊珊,等.2019.2014年6-7月湖北地区干旱特征及其异常环流分析[J].沙漠与绿洲气象,13(6):82−87. doi: 10.12057/j.issn.1002-0799.2019.06.010
Wang H Y, Wen Q P, Wang S S, et al. 2019. Drought characteristics and abnormal circulation in Hubei province from June to July in 2014 [J]. Desert and Oasis Meteorology,13(6):82−87 (in Chinese). doi:10.12057/j.issn.1002−0799.2019.06.010
|
姚朝龙,罗志才,胡月明,等.2019.利用GPS垂向位移监测西南地区干旱事件[J].测绘学报,48(5):547−554. doi: 10.11947/j.AGCS.2019.20180308
Yao C L, Luo Z C, Hu Y M, et al. 2019. Detecting droughts in Southwest China from GPS vertical position displacements [J]. Acta Geodaetica et Cartographica Sinica,48(5):547−554(in Chinese). doi: 10.11947/j.AGCS.2019.20180308
|
赵林,于家烁,薄岩,等.2015.基于SPEI的湖北省近52年干旱时空格局变化[J].长江流域资源与环境,24(7):1230−1237. doi: 10.11870/cjlyzyyhj201507021
Zhao L, Yu J S, Bo Y, et al. 2015. Temporal and spatial distribution of drought in Hubei province during 1961-2012 based on SPEI [J]. Resources and Environment in the Yangtze Basin,24(7):1230−1237 (in Chinese). doi: 10.11870/cjlyzyyhj201507021
|
朱丹彤. 2022. 中国区域多源水汽融合算法及其气候应用研究[D]. 徐州: 中国矿业大学.
Zhu D T. 2022. Study on Multi-source precipitable water vaper fusion method and its climatic applications in China [D]. Xuzhou: China University of Mining and Technology (in Chinese).
|
Bevis M, Businger S, Herring T, et al. 1992. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System [J]. Journal of Geophysical Research,97(D14):15787−15801. doi: 10.1029/92JD01517
|
Bordi I, Raziei T, Pereira L, et al. 2015. Ground-based GPS measurements of precipitable water vapor and their usefulness for hydrological applications [J]. Water Resources Management,29:471−486. doi:10.1007/s11269−014−0672−5
|
Schiettekatte R L, Selmira G M, Clara D L M. 2023. Use of GNSS and ERA5 precipitable water vapor based standardized precipitation conversion index for drought monitoring in the Mediterranean coast: a first case study in Southern Spain [J]. Advances in Space Research,72(9):3946−3959. doi: 10.1016/j.asr.2023.08.030
|
Shi H, Zhang R, Nie Z, et al. 2017. Inversion precipitable water vapor by GPS observation of CMONOC [J]. Journal of Civil Engineering and Architecture,11(6):595−607. doi:10.17265/1934−7359/2017.06.006
|
Tuller S. 1971. The world distribution of annual precipitation efficiency [J]. Journal of Geography,70(4):219−223. doi: 10.1080/00221347108981623
|
Yang F, Gong X, Li Z, et al. 2024. Spatiotemporal distribution and impact factors of GNSS-PWV in China based on climate region [J]. Advances in Space Research,73(8):4187−4201. doi: 10.1016/j.asr.2024.01.022
|
Zhao Q, Ma X, Yao W, et al. 2019a. Improved drought monitoring index using GNSS-derived precipitable water vapor over the Loess Plateau Area [J]. Sensors,19(24):5566. doi: 10.3390/s19245566
|
Zhao Q, Ma X, Yao W, et al. 2020. A drought monitoring method based on precipitable water vapor and precipitation [J]. Journal of Climate,33(24):10727−10741. doi:10.1175/JCLI−D−19−0971.1
|
Zhao Q, Yao Y, Yao W, et al. 2019b. GNSS-derived PWV and comparison with radiosonde and ECMWF ERA-Interim data over mainland China [J]. Journal of Atmospheric and Solar-Terrestrial Physics,182:85−92. doi: 10.1016/j.jastp.2018.11.004
|
Zhu H, Chen K, Chai H, et al. 2024. Characterizing extreme drought and wetness in Guangdong, China using global navigation satellite system and precipitation data [J]. Satellite Navigation,5(1):1−17. doi:10.1186/s43020−023−00121−6
|