Citation: | HU Dongming, WEI Chaoshi, ZHAO Kun, ZHOU Xinyu, ZHANG Lan. 2019: Dual-Doppler radar observation analysis of a quasi-linear convective system in South China in 2008. Torrential Rain and Disasters, 38(3): 193-203. DOI: 10.3969/j.issn.1004-9045.2019.03.001 |
A quasi-linear convection system (QLCS) in the stratiform region on 6 July 2008 has been investigated using dual-Doppler radar data collected from Guangzhou and Shenzhen. Three dimensional wind field, kinematic and thermodynamic structure are analysed and the maintenance mechanism of QLCS is discussed. The results are as follows. (1) The QLCS was formed in stratiform cloud precipitation region and has a moderate vertical wind shear with a weak unstable synoptic environment. The surface existed obvious meso-β-scale shear line during the QLCS development and the QLCS formed along the shear line.During the system passaged, water vapor was close to saturation without cold pool. (2) When the QLCS was in mature phase, the areas of vertical ascending motion and positive vorticity had banded structure, convections developed almost vertically, most of the strong radar (>4 dBz) echo developed to a height of about 5 km, and there was no tilting to the front of the system. The kinematic structures of the QLCS at the mature stage showed that their inside convective updrafts were smaller and the maximum value (6 m·s-1) appeared at middle and high levels. Deep convergence formed by the relative influxes in the front low level (2 km or less) and the deep rear inflow (8 km) existed in the convection. (3) Inside the QLCS convections, there was a perturbation high with pressure decreasing from low to high levels. Very small perturbation potential temperature indicated that the buoyancy effect was weak. The vertical momentum budget calculation indicated that the vertical pressure gradient force produced by the perturbation pressure formed by convergence was the main mechanism for the convection maintenance.
陈泰然, 周鸿祺, 林宗嵩, 等.1996.台湾海峡北部及邻近地区春夏中尺度对流系统之气候特征[J].大气科学(台湾), 24(3-4):145-163
|
丁一汇, 李鸿洲, 章名立, 等.1982.我国飑线发生条件的研究[J].大气科学, 6(1):18-27 doi: 10.3878/j.issn.1006-9895.1982.01.03
|
郭弘, 林永辉, 周淼, 等.2014.华南暖区暴雨中一次飑线的中尺度分析[J].暴雨灾害, 33(2):171-180 doi: 10.3969/j.issn.1004-9045.2014.02.010
|
刘淑媛, 孙建, 王洪庆, 等.2007.香港特大暴雨β中尺度线状对流三维结构研究[J].大气科学, 31(2):354-362 http://d.old.wanfangdata.com.cn/Periodical/daqikx200702016
|
李雪松, 罗亚丽, 管兆勇.2010.2010年6月中国南方持续性强降水过程:天气系统演变和青藏高原热力作用的影响[J].气象学报, 72(3):428-445 http://d.old.wanfangdata.com.cn/Periodical/qxxb201403002
|
倪允琪, 周秀骥, 张人禾, 等.2006.我国南方暴雨的实验与研究[J].应用气象学报, 17(6):690-703 doi: 10.3969/j.issn.1001-7313.2006.06.007
|
潘玉洁, 赵坤, 潘益农, 等.2012.用双多普勒雷达分析华南一次强飑线系统的中尺度结构特征[J].气象学报, 70(4):736-750 http://www.cnki.com.cn/Article/CJFDTotal-QXXB201204013.htm
|
叶朗明, 伍志方, 张华龙, 等.2016.相同季节和相似区域华南两次飑线过程比较分析[J].暴雨灾害, 35(5):445-454 doi: 10.3969/j.issn.1004-9045.2016.05.006
|
赵坤, 周仲岛, 胡东明, 等.2007.派比安台风"0606"登陆期间雨带中尺度结构的双多普勒雷达分析[J].南京大学学报(自然科学), 43(6):606-620 http://www.cnki.com.cn/Article/CJFDTotal-NJDZ200706005.htm
|
周秀骥.2003.98华南暴雨科学实验研究[M].北京:气象出版社:4
|
Bluestein H B, Marx G T, Jain M H. 1985. Formation of Meso scale Lines of Precipitation:Nonsevere Squall Lines in Oklahoma during the Spring[J]. Monthly Weather Review, 115(11):2 719-2 727 http://cn.bing.com/academic/profile?id=35d7a0d429f3734a6c41245518dc8cb7&encoded=0&v=paper_preview&mkt=zh-cn
|
Chong M, Amayenc P, Scialom G, et al. 1987. A tropical squall line observed during the COPT 81 experiment in West Africa.Part I:Kinematic structure inferred from dual-Doppler radar data[J]. Mon Wea Rev, 115:670-694 doi: 10.1175/1520-0493(1987)115<0670:ATSLOD>2.0.CO;2
|
Fankhauser J C, Barnes G M, Lemone M A. 1992. Structure of a midlatitude squall line formed in strong unidirectional shear[J]. Mon WeaRev, 120(120):237-260 http://cn.bing.com/academic/profile?id=ea49f1c6a5148aa51f92d77423e2a101&encoded=0&v=paper_preview&mkt=zh-cn
|
Gal-Chen T. 1978. A method for the initialization of the anelastic equations:Implications for matching models with observations[J]. Mon Wea Rev, 106(5):587-606 doi: 10.1175/1520-0493(1978)106<0587:AMFTIO>2.0.CO;2
|
Gallus W A, Snook N A, Johnson E V. 2008. Spring and Summer Severe We ather Reports over the Midwest as a Function of Convective Mode:A Preliminary Study[J]. Weather & Forecasting, 23(1):101-113 http://cn.bing.com/academic/profile?id=1dfc1706671452dbca0b75b2dca5f126&encoded=0&v=paper_preview&mkt=zh-cn
|
Lafore J P, Redelsperger J L, Jaubert G.1988. Comparison between a three-dimensional simulation and Doppler radar data of a tropical squall line:Transports of mass, momentum, heat and moisture[J]. J Atmos Sci, 45(22):3 483-3 500 doi: 10.1175/1520-0469(1988)045<3483:CBATDS>2.0.CO;2
|
Lemone M A, Barnes G M, Zipser E J. 1984. Momentum flux by lines of cumulonimbus over the tropical oceans[J]. J Atmos Sci, 41(3):1 914-1 932 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_2073382
|
Luo Y, Zhang R, Wan Q, et al. 2017. The southern China monsoon rainfall experiment (SCMREX)[J]. Bull Amer Meteor Soc, 98(5):999-1 013 doi: 10.1175/BAMS-D-15-00235.1
|
Meng Z Y, Yan D C, Zhang Y J. 2013. General Features of Squall Lines in East China[J]. Mon Wea Rev, 141(5):1 629-1 647 doi: 10.1175/MWR-D-12-00208.1
|
Meng Z Y, Zhang F Q, Markowski P, et al. 2012. A Modeling Study on the Development of a Bowing Structure and Associated Rear Inflow within a Squall Line over South China[J]. J Atmos Sci, 69(4):1 182-1 207 doi: 10.1175/JAS-D-11-0121.1
|
Parker M D, Johnson R H. 2000. Organizational Modes of Midlatitude Mesoscale Convective Systems[J].Monthly Weather Review, 128(10):3413-3 436 doi: 10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2
|
Rotunno R, Klemp J B, Weisman M L. 1988. A theory for strong long-lived squall lines[J]. J Atmos Sci, 45(3):463-485 doi: 10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2
|
Roux F. 1985. Retrieval of thermodynamic fields from multiple-Doppler radar data using the equations of motion and the ther-modynamic equation[J]. Mon Wea Rev, 113(12):2 142-2 157 doi: 10.1175/1520-0493(1985)113<2142:ROTFFM>2.0.CO;2
|
Roux F. 1988. The West African squall line observed on 23 June 1981 duringCOPT81.Kinematicsandthermodynamicsoftheconvectiveregion[J]. J Atmos Sci, 45(3):406-426 doi: 10.1175/1520-0469(1988)045<0406:TWASLO>2.0.CO;2
|
Roux F, Marcal V, Hauser D. 1993. The 12/13 January 1988 Narrow Cold-Frontal Rainband Observed during MFDP/FRONTS 87.Part I:Kinematics and Thermodynamics[J]. Journal of the Atmospheric Sciences, 50(7):951-974 doi: 10.1175/1520-0469(1993)050<0951:TJNCFR>2.0.CO;2
|
Wang T, Lin Y, Pasken R, et al. 1990. Characteristics of a subtropical squall line determined from TAMEX dual-Doppler data.Part I:Kinematic structure[J]. J Atmos Sci, 47(20):2 357-2 381 doi: 10.1175/1520-0469(1990)047<2357:COASSL>2.0.CO;2
|
Weisman M L, Klemp J B, Rotunno R. 1988. The structure and evolution of numerically simulated squall lines[J]. J Atmos Sci, 45(14):1 990-2 013 doi: 10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2
|
Yuter S E. 1995. Three-Dimensional kinematic and microphysical evolution of Florida cumulonimbus.Part3:Vertical mass transport, mass divergence, and synthesis[J]. Mon Wea Rev, 123(7):1 921-1 940 doi: 10.1175/1520-0493(1995)123<1921:TDKAME>2.0.CO;2
|
Zhang R, Ni Y, Liu L, et al. 2011. South China heavy rainfall experiments(SCHe REX)[J]. J Meteor Soc, 89A(p):153-166 http://www.wmo.int/pages/prog/arep/wwrp/new/documents/SCMREX_rhz.pdf
|