Advanced Search
LI Guoping, ZHANG Wanchen. 2019: Recent advances in the research of heavy rain associated with vortices and shear lines come from the Tibetan Plateau. Torrential Rain and Disasters, 38(5): 464-471. DOI: 10.3969/j.issn.1004-9045.2019.05.008
Citation: LI Guoping, ZHANG Wanchen. 2019: Recent advances in the research of heavy rain associated with vortices and shear lines come from the Tibetan Plateau. Torrential Rain and Disasters, 38(5): 464-471. DOI: 10.3969/j.issn.1004-9045.2019.05.008

Recent advances in the research of heavy rain associated with vortices and shear lines come from the Tibetan Plateau

More Information
  • Received Date: July 30, 2019
  • Accepted Date: August 30, 2019
  • Available Online: November 03, 2022
  • Published Date: October 08, 2019
  • The low weather system over the Tibetan Plateau (TP) plays a very important role in the heavy rainfall of the eastern China in summer, the symbiosis between the Tibetan Plateau vortex (TPV) and the Tibetan Plateau shear line (TPSL) is one common phenomena, it is called as vortex-shear rainstorm by forecaster. We review the research history and new progresses of the TPVs and TPSLs induced heavy rainfall, mainly discuss some scientific problems such as artificial-intelligence applications, synoptic diagnostic calculation, dynamic theory and numerical model in the study of relationship between TPSL and TPV, interaction process and mechanism induced heavy rain. According to the latest research achievement of and the new trends of related theoretical method and technical tool in the study of vortex-shear rainstorm, we propose several notable new research directions in the field of this study. At present, there are still great divergences in the understanding of the relationship between these two types of low systems with different geometrical shapes but similar physical attributes. The physical mechanism of their interaction leading to high-impact weather processes is not very clear, and the differences between climatological statistical results of TPVs and TPSLs are quite obvious. Therefore, the in-depth exploration and cross-development of this research field not only has important scientific significance for promoting the theoretical development of weather and climate impacts on the TP, but also has higher values of application and generalization for improving the operational ability of disaster weather and climate in the plateau and downstream areas.

  • 陈佳, 李国平.2018.应用NASA MERRA再分析资料对一次高原切变线的诊断分析[J].气象科学, 38(3): 320-330 http://www.cnki.com.cn/Article/CJFDTotal-QXKX201803005.htm
    杜梅, 李国平, 丁晨晨.2018.高原横切变线上的波动及其与低涡的可能联系[J].高原气象, 37(6): 1605-1615 http://www.cnki.com.cn/Article/CJFDTotal-GYQX201806013.htm
    杜梅, 李国平, 李山山.2019.高原横切变线与高原低涡关系的初步研究[J].大气科学, doi: 10.3878/j.issn.1006-9895.1906.18191
    高守亭, 周玉淑.2001.水平切变线上涡层不稳定理论[J].气象学报, 59(4): 393-404 http://d.wanfangdata.com.cn/Periodical/qxxb200104002
    顾小祥, 李国平.2019.云微物理参数化方案对一次高原切变线暴雨过程数值模拟的影响[J].云南大学学报(自然科学版), 41(3): 526-536 http://www.cqvip.com/QK/92787X/20193/7002101128.html
    何光碧, 高文良, 屠妮妮.2009.2000—2007年夏季青藏高原低涡切变线观测事实分析[J].高原气象, 28(3): 549-555 http://www.cnki.com.cn/Article/CJFDTotal-GYQX200903009.htm
    何光碧, 师锐.2014.三次高原切变线过程演变特征及其对降水的影响[J].高原气象, 33(3): 615-625 http://www.cnki.com.cn/Article/CJFDTotal-GYQX201403004.htm
    李国平, 陈佳.2018.西南涡及其暴雨研究新进展[J].暴雨灾害, 37(4): 293-302 http://www.byzh.org.cn/CN/abstract/abstract2504.shtml
    李国平, 李山山, 黄楚惠.2017.高原切变线与高原低涡相互作用的研究现状与展望[J].地球科学进展, 32(8): 789-795 http://www.cqvip.com/QK/94287X/201709/68887490504849554857484852.html
    李子良, 万军.1995.准地转动量近似下风速切变线上的波动[J].气象学报, 53(3): 289-298 http://www.cnki.com.cn/Article/CJFDTotal-QXXB503.004.htm
    林志强, 周振波, 假拉.2013.高原低涡客观识别方法及其初步应用[J].高原气象, 32(6): 1580-1588 http://www.cqvip.com/QK/91655X/201306/48125998.html
    刘建勇, 谈哲敏, 张熠.2012.梅雨期3类不同形成机制的暴雨[J].气象学报, 70(3): 452-466 http://d.wanfangdata.com.cn/Periodical/qxxb201203009
    刘自牧, 李国平, 张博.2018.高原涡与高原切变线伴随出现的统计特征[J].高原气象, 37(5): 1233-1240 http://www.cnki.com.cn/Article/CJFDTotal-GYQX201805008.htm
    刘自牧, 李国平.2019.高原切变线的客观识别与时空分布的统计分析[J].大气科学, 43(1): 13-26 http://www.cqvip.com/QK/91836X/201901/68818875504849574849484956.html
    李山山, 李国平.2017a.一次鞍型场环流背景下高原东部切变线降水的湿Q矢量诊断分析[J].高原气象, 36(2): 317-329 http://d.wanfangdata.com.cn/Periodical/gyqx201702004
    李山山, 李国平.2017b.一次高原低涡与高原切变线演变过程与机理分析[J].大气科学, 41(4): 713-726 http://d.wanfangdata.com.cn/Periodical/daqikx201704005
    罗四维.1992.青藏高原及其邻近地区几类天气系统的研究[M].北京:气象出版社, 1-205
    罗潇, 李国平.2019a.一次东移型高原切变线过程的扰动动能特征[J].气象科学, 39(2): 226-236 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkx201902009
    罗潇, 李国平.2019b.动能空间尺度分解及其在高原切变线的分析应用[J].高原气象, 38(2): 314-324 http://www.cqvip.com/QK/91655X/201902/7001897700.html
    罗雄, 李国平.2018a.一次高原切变线过程的数值模拟与阶段性结构特征[J].高原气象, 37(2): 406-419 http://www.cqvip.com/QK/91655X/201802/675205680.html
    罗雄, 李国平.2018b.高空急流对高原切变线影响的数值试验与动力诊断[J].气象学报, 76(3): 361-378 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb201803003
    彭新东, 程麟生.1992.高原东侧低涡切变线发展的个例数值研究Ⅰ-分析和诊断[J].兰州大学学报(自然科学版), 28(2): 163-168 http://www.cqvip.com/Main/Detail.aspx?id=821499
    彭新东, 程麟生.1994.高原东侧低涡切变线发展的个例数值研究Ⅱ-中尺度数值模拟[J].兰州大学学报(自然科学版), 30(1): 124-131 http://www.cqvip.com/Main/Detail.aspx?id=1420321
    青藏高原气象科学研究拉萨会战组.1981.夏半年青藏高原500毫巴低涡切变线的研究[M].北京:科学出版社, 1-122
    孙建华, 李娟, 沈新勇, 等.2015.2013年7月四川盆地一次特大暴雨的中尺度系统演变特征[J].气象, 41(5): 533-543 http://d.wanfangdata.com.cn/Periodical/qx201505002
    屠妮妮, 何光碧.2010.两次高原切变线诱发低涡活动的个例分析[J].高原气象, 29(1): 90-98 http://d.wanfangdata.com.cn/Periodical_gyqx201001012.aspx
    杨克明, 毕宝贵.2001.1998年长江上游致洪暴雨的分析研究[J].气象, 2001, 27(8): 9-14 http://www.cqvip.com/QK/95348X/20018/5362899.html
    姚秀萍, 孙建元, 康岚, 等.2014.高原切变线研究的若干进展[J].高原气象, 33(1): 294-300 http://d.wanfangdata.com.cn/Periodical/gyqx201401030
    叶笃正, 高由僖, 等.1979.青藏高原气象学[M].北京:科学出版社, 1-278
    郁淑华.2000.长江上游暴雨对1998年长江洪峰影响的分析[J].气象, 26(1): 56-57 http://www.cqvip.com/QK/95348X/200001/4144447.html
    郁淑华, 高文良, 彭骏.2013.近13年青藏高原切变线活动及其对中国降水影响的若干统计[J].高原气象, 32(6): 1527-1537 http://d.wanfangdata.com.cn/Periodical/gyqx201306001
    张博, 李国平.2017.基于CFSR资料的青藏高原低涡客观识别技术及应用[J].兰州大学学报(自然科学版), 53(1): 106-111 http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201701016.htm
    中国气象局成都高原气象研究所.2018.青藏高原低涡切变年鉴(1998—2016)[M].北京:科学出版社
    Chen G, Li G P.2014.Dynamic and numerical study of waves in the Tibetan Plateau vortex[J].Advances in Atmospheric Sciences, 31(1): 131-138 http://www.cnki.com.cn/Article/CJFDTotal-DQJZ201401013.htm
    Dunkerton T J, Montgomery M T, Wang Z.2009.Tropical cyclogenesis in a tropical wave critical layer: Easterly waves[J].Atmos Chem Phys, 9(15): 5587-5646
    Gao S T.2000.The instability of the vortex sheet along the shear line[J].Advances in Atmospheric Sciences, 17(4): 525-537 doi: 10.1007/s00376-000-0016-7
    Li G P, Lu J H.1996.Some possible solutions of nonlinear internal inertial gravity wave equations in the atmosphere[J].Advances in Atmospheric Sciences, 13(2): 244-252 doi: 10.1007/BF02656866
    Lin Z Q.2015.Analysis of Tibetan Plateau vortex activities using ERA-Interim data for the period 1979-2013[J].J Meteor Res, 29(5): 720-734 http://www.ixueshu.com/document/62274b5aeb8d6e6986dc63d0450f92ae318947a18e7f9386.html
    Rasmussen E N.2003.Refined supercell and tornado forecast parameters[J].Weather and Forecasting, 18(3): 530-535 http://connection.ebscohost.com/c/articles/10071025/refined-supercell-tornado-forecast-parameters
    Rasmussen E N, Blanchard D O.1998.A baseline climatology of sounding-derived supercell and tornado forecast parameters[J].Weather and Forecasting, 13(4): 1148-1164
    Tory K J, Dare R A, Davidson N E, et al.2013.The importance of low-deformation vorticity in tropical cyclone formation[J].Atmos Chem Phys, 13(4): 2115-2132
    Zhang X, Yao X P, MaJL, etal.2016.Climatology of transverse shear lines related to heavy rainfall over the Tibetan Plateau during boreal summer[J].J MeteorRes, 30(6): 915-926 http://d.wanfangdata.com.cn/Periodical/qxxb-e201606006

Catalog

    Article views (127) PDF downloads (1275) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return