Citation: | SHEN Xinyong, ZHANG Chi, GAO Huanyan, WANG Lin, LI Xiaofan. 2020: Classification and dynamic composite analysis of three kinds of high altitude cold vortex. Torrential Rain and Disasters, 39(1): 1-9. DOI: 10.3969/j.issn.1004-9045.2020.01.001 |
Based on geographical distribution, the North China cold vortexes are divided into three categories:Northeast China Cold Vortex (120°-145°E, 35°-60°N), North China Cold Vortex (100°-130°E, 30°-45°N) and East Mongolia Cold Vortex (100°-130°E, 40°-55°N). According to NCEP/NCAR 1°×1° reanalysis datasets and daily precipitation datasets from 2000 to 2018, the cold vortex cases in 19 years are screened, the activity rules of the three kinds of cold vortexes are statistically analyzed, and the structure and precipitation characteristics of the three kinds of cold vortexes are analyzed by dynamic composite analysis method. The results show that in the 490 cases of high-altitude cold vortexes in 19 years, 2 cases are missed, and 13 cases are repeated. The remaining 475 cases can be well selected and classified, and the definitions of three types of cold vortexes are reasonable. Northeast Cold Vortex and East Mongolian Cold Vortex can occur throughout the year, while North China Cold Vortexes are not found in December and February. Northeast Cold Vortexes are found mostly in April and May, and also in March and August with less frequency. North China cold vortexes are found mostly in May and less frequently in winter. In May, June and September, there are more cold vortexes generated in east Mongolia, while there are fewer in February, March and November. Dynamic composite analysis is used to analyze the three types of cold vortices. In terms of structure, the distribution of potential height, temperature, vorticity, and isentropic potential vortices show that the average strength of the Northeast China Cold Vortex is the strongest, followed by the East Mongolia Cold Vortex, and the North China Cold Vortex is the weakest. In the period when the cold vortex intensity is the strongest, the cold vortex precipitation mainly appears in the north of the outlet area of the upper jet, with strong divergence. Due to the differences in the distribution of low-layer humidity and the intensity of moisture transport, there are differences in the location of large precipitation centers of the three types of cold vortexes. The North China Cold Vortex has the largest mean precipitation intensity, followed by the Northeast Cold Vortex, and the East Mongolia Cold Vortex has relatively weak precipitation.
蔡雪薇, 谌芸, 沈新勇, 等.2019.冷涡背景下不同类型强对流天气的成因对比分析[J].气象, 45(5):621-631 http://d.old.wanfangdata.com.cn/Periodical/qx201905003
|
丁力, 彭九慧. 2004.东蒙冷涡天气气候统计分析和预报[J].辽宁气象, 21(1):9-18 http://d.old.wanfangdata.com.cn/Periodical/lnqx200401005
|
符娇兰, 陈双, 沈晓琳, 等. 2019.两次华北冷涡降水成因及预报偏差对比分析[J].气象, 45(5):606-620 http://d.old.wanfangdata.com.cn/Periodical/qx201905002
|
郜彦娜, 何立富.2013.2011年7月12-20日华北冷涡阶段性特征[J].应用气象学报, 24(6):704-713 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201306007
|
李江波, 王宗敏, 王福侠, 等.2011.华北冷涡连续降雹的特征与预报[J].高原气象, 30(4):1119-1131 http://d.old.wanfangdata.com.cn/Conference/7781297
|
李爽, 丁治英, 刘云桦, 等.2017.东北冷涡下辽宁省短时强降水统计与合成分析[J].气象科学, 37(1):70-77 http://d.old.wanfangdata.com.cn/Periodical/qxkx201701008
|
李银娥, 谌伟, 张萍萍.2007.一次华北冷涡暴雨过程的诊断分析[J].暴雨灾害, 26(4):306-310 http://www.byzh.org.cn/CN/abstract/abstract1294.shtml
|
李永生, 刘伯奇, 王莹, 李菲.非绝热加热对6月东北冷涡形成演变的影响及其可能机制[J].气象与环境学报, 2016, 32(6):19-26 http://d.old.wanfangdata.com.cn/Periodical/lnqx201606003
|
马素艳, 韩经纬, 斯琴, 等.2016.冷涡背景下呼和浩特市冰雹特征分析[J].暴雨灾害, 35(6):529-536 http://www.byzh.org.cn/CN/abstract/abstract2375.shtml
|
孙力, 王琪, 唐晓玲. 1995.暴雨类冷涡与非暴雨类冷涡的合成对比分析[J].气象, 21(3):7-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500400427
|
田秀霞, 邵爱梅.2008.一次河北大暴雨的华北低涡结构和涡度收支分析[J].暴雨灾害, 27(4):320-325 http://www.byzh.org.cn/CN/abstract/abstract1841.shtml
|
王丛梅, 丁治英. 2006.河北夏季低涡暴雨的统计研究[J].自然灾害学报, 15(5):69-75 http://d.old.wanfangdata.com.cn/Periodical/zrzhxb200605011
|
王东海, 钟水新, 刘英, 等. 2007.东北暴雨的研究[J].地球科学进展, 22(6):549-560 http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200706001
|
王宇欣, 宋瑶. 2014.东北冷涡引发的强雷暴个例分析[J].暴雨灾害, 33(3):264-272 http://www.byzh.org.cn/CN/abstract/abstract2239.shtml
|
吴迪, 寿绍文, 姚秀萍.2010.东北冷涡暴雨过程中干侵入特征及其与降水落区的关系[J].暴雨灾害, 29(2):111-116 http://www.byzh.org.cn/CN/abstract/abstract1624.shtml
|
武威, 牛淑贞.2017.2015年河南两次东北冷涡型强对流天气对比分析[J].暴雨灾害, 36(5):397-409 http://www.byzh.org.cn/CN/abstract/abstract2447.shtml
|
杨珊珊, 谌芸, 李晟祺, 等. 2016.冷涡背景下飑线过程统计分析[J].气象, 42(9):1079-1089 http://d.old.wanfangdata.com.cn/Periodical/qx201609005
|
郁珍艳, 何立富, 范广洲, 等.2011.华北冷涡背景下强对流天气的基本特征分析[J].热带气象学报, 27(1):89-94 http://d.old.wanfangdata.com.cn/Periodical/rdqxxb201101010
|
郑秀雅, 张廷治, 白人海. 1992.东北暴雨[M].北京:气象出版社:129
|
宗志平, 张恒德, 马杰.2009年4月下旬蒙古气旋型大范围沙尘暴天气过程的诊断分析[J].沙漠与绿洲气象, 2012, 6(1):1-9 http://d.old.wanfangdata.com.cn/Periodical/xjqx201201001
|
Zhang C, Zhang Q, Wang Y, et al. 2008. Climatology of warm season cold vortices in East Asia:1979-2005[J]. Meteorology and Atmospheric Physics, 100(1-4):291-301 doi: 10.1007/s00703-008-0310-y
|