Advanced Search
QIAO Na, QIAN Peng, ZHOU Qing, ZHANG Chenxin, WU Xinyue. 2021: Analysis of the evolution reason of the mesoscale vortex and its influence on MCS under the background of the northeast cold vortex. Torrential Rain and Disasters, 40(5): 474-483. DOI: 10.3969/j.issn.1004-9045.2021.05.004
Citation: QIAO Na, QIAN Peng, ZHOU Qing, ZHANG Chenxin, WU Xinyue. 2021: Analysis of the evolution reason of the mesoscale vortex and its influence on MCS under the background of the northeast cold vortex. Torrential Rain and Disasters, 40(5): 474-483. DOI: 10.3969/j.issn.1004-9045.2021.05.004

Analysis of the evolution reason of the mesoscale vortex and its influence on MCS under the background of the northeast cold vortex

More Information
  • Received Date: February 26, 2020
  • Accepted Date: October 26, 2020
  • Available Online: November 03, 2022
  • Published Date: September 30, 2021
  • An event of mesoscale vortex with MCS occurred in Shandong region on 3 August 2015 was investigated and analyzed using the WRF mesoscale numerical model based on NCEP/NCAR analysis data and Doppler radar observation data. The study revealed the reason for the occurrence and development of the mesoscale vortex and its effect on the mesoscale convection system under the environment of the northeast cold vortex. The results are as follows. (1) The upper-level jet stream' s strong divergence in front of the trough of the synoptic-scale northeast cold vortex and the low-level instability energy release provided favorable condition for the lower mesoscale vortex and convection occurrence. The generation of the low-level mesoscale vortex promoted the occurrence of the MCS. (2) When the mesoscale vortex forms and develops, the positive vorticity of the lower layer is mainly affected by the horizontal divergence term and the vertical transport term, with the former having a greater effect. The positive vorticity of the middle layer is mainly affected by the vertical transport term. Due to positive contributions of the two terms, the positive vorticity increases, and the vortex develops.When the mesoscale vortex weakens, the horizontal divergence term in the middle and lower layers weakens and the vertical transport term becomes negative, leading to the decrease of positive vorticity generation and the increase of negative vorticity generation, and therefore the vortex decreases. (3) When the MCS develops, the increase of perturbation effective potential energy mainly comes from the latent heat release and the conversion from zonal mean effective potential energy to disturbance effective potential energy, and then the perturbation effective potential energy is transformed into the perturbation kinetic energy through the vertical motion. The increase of the perturbation kinetic energy promotes the development of convections. The mesoscale vortex not only provides energy for the severe convection, but also influences the evolution of the strong convection.

  • 白人海, 谢安. 1998. 东北冷涡过程中的飑线分析[J]. 气象, 24(4): 37-40 doi: 10.3969/j.issn.1673-8411.1998.04.012
    贝耐芳, 赵思雄. 2002.1998二度梅期间突发强暴雨系统的中尺度分析[J]. 大气科学, 26(4): 526-540 doi: 10.3878/j.issn.1006-9895.2002.04.10
    程麟生, 冯伍虎. 2001. "98.7" 突发大暴雨及中尺度低涡结构的分析和数值模拟[J]. 大气科学, 25(4): 465-478 doi: 10.3878/j.issn.1006-9895.2001.04.04
    东高红, 韩素芹, 刘一玮, 等. 2013. 一次大暴雨过程中尺度涡旋系统特征分析[J]. 暴雨灾害, 32(2): 97-104 doi: 10.3969/j.issn.1004-9045.2013.02.001
    高守亭, 周玉淑. 2019. 近年来中尺度涡动力学研究进展[J]. 暴雨灾害, 38(5): 431-439 doi: 10.3969/j.issn.1004-9045.2019.05.005
    何光碧, 屠妮妮, 张利红. 2014. 一次低涡暴雨过程发生机制及其模式预报分析[J]. 暴雨灾害, 33(3): 239-246 doi: 10.3969/j.issn.1004-9045.2014.03.006
    胡向军, 陶健红, 郑飞等. 2008. WRF模式物理过程参数化方案简介[J]. 甘肃科技, 24(20): 73-75 doi: 10.3969/j.issn.1000-0952.2008.20.028
    谌伟, 岳阳, 刘佩廷, 等. 2017. 鄂东北一次特大暴雨过程的两个中尺度对流系统分析[J]. 暴雨灾害, 36(4): 357-364 doi: 10.3969/j.issn.1004-9045.2017.04.008
    孙建华, 张小玲, 齐琳琳, 等. 2004.2002年中国暴雨试验期间一次低涡切变上发生发展的中尺度对流系统研究[J]. 大气科学, 28(5): 675-691 doi: 10.3878/j.issn.1006-9895.2004.05.03
    孙力, 安刚, 廉毅, 等. 2000. 夏季东北冷涡持续性活动及其大气环流异常特征的分析[J]. 气象学报, 58(6): 704-714 doi: 10.3321/j.issn:0577-6619.2000.06.006
    王芬, 唐浩鹏, 陈晓燕. 2015. 黔西南一次低涡切变型暴雨的中尺度分析[J]. 沙漠与绿洲气象, 9(5): 41-46 https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201505009.htm
    王海东, 李怀川, 吴正可. 2008. 一次低涡东移引发的大暴雨过程诊断分析[J]. 暴雨灾害, 27(4): 341-345 doi: 10.3969/j.issn.1004-9045.2008.04.010
    王宇欣, 宋瑶. 2014. 东北冷涡引发的强雷暴个例分析[J]. 暴雨灾害, 33(3): 264-272 doi: 10.3969/j.issn.1004-9045.2014.03.009
    王智, 翟国庆, 高坤. 2003. 长江中游一次β中尺度低涡的数值模拟[J]. 气象学报, 60(1): 66-77 doi: 10.3321/j.issn:0577-6619.2003.01.007
    徐亚梅, 高坤. 2002.1998年7月22日长江中游中β尺度低涡的数值模拟及分析[J]. 气象学报, 60(1): 85-95 doi: 10.3321/j.issn:0577-6619.2002.01.010
    章国材. 2004. 美国WRF模式的进展和应用前景[J]. 气象, 30(12): 27-31 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200412005.htm
    张立祥. 2008. 东北冷涡中尺度对流系统研究[D]. 南京: 南京信息工程大学
    张立祥, 李泽椿. 2009. 东北冷涡研究概述[J]. 气候与环境研究, 14(2): 218-228 https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200902012.htm
    张庆红, 刘启汉, 陈受钧. 2000. 台湾海峡中尺度对流系统的数值研究Ⅳ: 动量收支[G]//海峡两岸及邻近地区暴雨试验研究, 北京: 气象出版社
    赵向军. 2017. 飑线发展过程中水平涡度与垂直速度变化的特征分析及成因研究[D]. 南京: 南京信息工程大学
    郑秀雅, 张廷治, 白人海. 1992. 东北暴雨[M]. 北京: 气象出版社: 129
    朱乾根, 林锦瑞, 寿绍文, 等. 2007. 天气学原理和方法[M]. 北京: 气象出版社: 108-116
    Fu S M, Sun J H. 2012. Circulation and eddy einetic energy budget analyses on the evolution of a northeast China cold vortex (NCCV) in May 2010[J]. J Meteor Soc Japan, 90(4): 553-573 doi: 10.2151/jmsj.2012-408
    Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 134: 2318-2341 doi: 10.1175/MWR3199.1
    Jiang H, Raymond D J. 1995. Simulation of a mature mesoscale convective system using a nonlinear balance mode[J]. Journal of the Atmospheric Sciences, 52: 161-175 doi: 10.1175/1520-0469(1995)052<0161:SOAMMC>2.0.CO;2
    Kain J S, Fritsch J M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. Journal of the Atmospheric Sciences, 47(23): 2784-2802 doi: 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
    Kain J S, Fritsch J M. 1993. Convective parameterization for mesoscale models: the Kain-Fritsch scheme. The representation of cumulus convection in numerical models[J]. American Meteorological Society, 246: 165-170 http://www.springer.com/cda/content/document/productFlyer/productFlyer_978-1-935704-13-3.pdf?SGWID=0-0-1297-177374893-0
    Lacis A A. 1974. A parametrization for the absorption of solar radiation in the Earth's atmosphere[J]. Journal of the Atmospheric Sciences, 31(1): 118-133 doi: 10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2
    Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research Atmospheres, 102(14): 16663-16682 http://www2.mmm.ucar.edu/wrf/users/phys_refs/SW_LW/RRTM.pdf
    Orlanski I. 1975. A rational subdivision of scales for atmospheric processes[J]. Bulletin of the American Meteorological Society, 56(5): 527-530 doi: 10.1175/1520-0477-56.5.527
    Zhao S X, Sun J H. 2007. Study on cut-off low-pressure systems with floods over northeast Asia[J]. Meteorology and Atmospheric Physics, 96: 159-180 doi: 10.1007/s00703-006-0226-3
  • Related Articles

  • Cited by

    Periodical cited type(2)

    1. 陈宇,杨磊,王瀛,金博,李萍,曹世腾,杨雪,刘硕. 东北冷涡背景下弓形回波导致的雷暴大风成因分析. 暴雨灾害. 2024(06): 693-701 . 本站查看
    2. 覃皓,王志毅,石怡宁,翟舒楠,祁丽燕. 广西沿海一次冬季暖区暴雨的多尺度能量诊断. 暴雨灾害. 2023(03): 283-292 . 本站查看

    Other cited types(0)

Catalog

    Article views (73) PDF downloads (258) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return