Advanced Search
GAO Dawei, WU Lihong, MA Hao, YAO Yiping, FANG He, ZHU Zhanyun, WEI Shuang. 2021: Simulation and verification of a flood inundation event in Linhai induced by super severe typhoon based on CMPAS data. Torrential Rain and Disasters, 40(5): 549-557. DOI: 10.3969/j.issn.1004-9045.2021.05.012
Citation: GAO Dawei, WU Lihong, MA Hao, YAO Yiping, FANG He, ZHU Zhanyun, WEI Shuang. 2021: Simulation and verification of a flood inundation event in Linhai induced by super severe typhoon based on CMPAS data. Torrential Rain and Disasters, 40(5): 549-557. DOI: 10.3969/j.issn.1004-9045.2021.05.012

Simulation and verification of a flood inundation event in Linhai induced by super severe typhoon based on CMPAS data

More Information
  • Received Date: December 06, 2020
  • Accepted Date: May 27, 2021
  • Available Online: November 03, 2022
  • Published Date: September 30, 2021
  • Taking the flood inundation event in Linhai, Taizhou, Zhejiang Province caused by the super severe typhoon (1909) Lekima for example, we have verified and evaluated the 5km real-time data (CMPAS-5km) from the CMA Multi-source Precipitation Analysis System by using the precipitation data obtained by hydrological and meteorological stations over Zhejiang Province. In addition, we haveconductedflood simulations under the rainstorm scenarios based on the spatial distribution with weighted grid of area precipitation and accumulated precipitation calculated by CMPAS-5km to drive the FloodArea two-dimensional hydrodynamic inundation model, and performed verification of the simulated flooding by using Sentinel-1 SAR images and representative flooded points. The results show that the precipitation from CMPAS-5km and that from the stations have good temporal and spatial consistency, and the correlation coefficient (R) ofprecipitation from CMPAS-5km with those from hydrological stations and"hydrological + meteorological"stations are both 0.89. Rand root mean square error (RSME) of precipitation from CMPAS-5km with the hourly averaged precipitation from hydrological stations are 0.79 and 1.7 mm·h-1, respectively. The hourly area rainfall among CMPAS-5km, hydrological stations and meteorological stations have more consistent variation trend in Taizhou flooded simulation area, and the accumulated area rainfall in the whole simulation process is 305.5 mm, 304.1 mm and 283.7 mm, respectively. CMPAS-5km is superior to the other two sets of data from ground stations in stability, timeliness, precision and data interface. The newly-increased water area in SAR images matches the FloodArea simulation results well, and the relative bias between the maximum simulated water depth and the actual water depth at the four verification points is within ±22%.

  • 陈军, 陈晋, 廖安平, 等. 2014. 全球30 m地表覆盖遥感制图的总体技术[J]. 测绘学报, 43(6): 551-557 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201406002.htm
    丁志雄. 2004. 基于RS与GIS的洪涝灾害损失评估技术方法研究[D]. 北京: 中国水利水电科学研究院
    黄国如, 罗海婉, 陈文杰, 等. 2019. 广州东濠涌流域城市洪涝灾害情景模拟与风险评估[J]. 水科学进展, 30(5): 643-652 https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201905004.htm
    范伟, 何彬方, 姚筠, 等. 2018. 基于哨兵1号的洪水淹没面积监测[J]. 气象科技, 46(2): 396-402 https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201802026.htm
    李显风, 周自江, 李志鹏, 等. 2017. 基于江西省水文资料对中国融合降水产品的质量评估[J]. 气象, 2017, 43(12): 1534-1546 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201712009.htm
    李云, 范子武, 吴时强, 等. 2005. 大型行蓄洪区洪水演进数值模拟与三维可视化技术[J]. 水利学报, 36(10): 1158-1164 doi: 10.3321/j.issn:0559-9350.2005.10.003
    卢燕宇, 邓汗青, 田红, 等. 2020. 改进的暴雨洪水模拟算法及其在淮河流域的应用研究[J]. 气象科技进展, 10(5): 121-129 https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202005026.htm
    潘旸, 谷军霞, 徐宾, 等. 2018a. 多源降水数据融合研究及应用进展[J]. 气象科技进展, 8(1): 143-152 https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201801035.htm
    潘旸, 谷军霞, 宇婧婧, 等. 2018b. 中国区域高分辨率多源降水观测产品的融合方法试验[J]. 气象学报, 76(5): 755-766 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201805008.htm
    潘旸, 沈艳, 宇婧婧, 等. 2015. 基于贝叶斯融合方法的高分辨率地面-卫星-雷达三源降水融合试验[J]. 气象学报, 73(1): 177-186 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201501013.htm
    苏布达, 姜彤, 郭业友, 等. 2015. 基于GIS栅格数据的洪水风险动态模拟模型及其应用[J]. 河海大学学报(自然科学版), 33(4): 370-374 https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200504003.htm
    孙桂华, 王善序, 王金銮, 等. 1992. 洪水风险分析制图实用指南[M]. 北京: 水利电力出版社: 83-85
    孙亚勇, 黄诗峰, 李纪人, 等. 2017. Sentinel-1A SAR数据在缅甸伊洛瓦底江下游区洪水监测中的应用[J]. 遥感技术与应用, 32(2): 282-288 https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201702012.htm
    夏志宏, 周月华, 史瑞琴, 等. 2014. 基于MapGIS的暴雨洪涝风险评估系统设计与实现[J]. 自然灾害学报, 23(3): 132-137 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201403017.htm
    谢五三, 吴蓉, 丁小俊. 2018. 基于FloodArea模型的城市内涝灾害风险评估与预警[J]. 长江流域资源与环境, 27(12): 2848-2855 https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201812022.htm
    徐宗学, 程涛, 洪思扬, 等. 2018. 遥感技术在城市洪涝模拟中的应用进展[J]. 科学通报, 63(21): 2156-2166 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201821009.htm
    杨东, 侯精明, 李丙尧, 等. 2020. 无资料城区管网排水过程概化模拟研究[J]. 水资源与水工程学报, 31(3): 139-144 https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ202003021.htm
    杨青, 孙除光, 石玉光, 等. 2016. 阿克苏流域的面雨量序列及其与径流关系[J]. 地理学报, 61(7): 697-704 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200607003.htm
    杨森, 张明军, 王圣节, 等. 2017. 基于高分辨率格点数据的2008-2013年青藏高原面雨量特征[J]. 冰川冻土, 39(5): 1113-1121 https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201705020.htm
    俞剑蔚, 李聪, 蔡凝昊, 等. 2019. 国家级格点实况分析产品在江苏地区的适用性评估分析[J]. 气象, 45(9): 1288-1299 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201909009.htm
    曾玲芳, 李芳, 万利华. 2015. 基于Sentinel-1卫星SAR数据的洪水淹没范围快速提取[J]. 地理信息世界, 22(5): 100-107 https://www.cnki.com.cn/Article/CJFDTOTAL-CHRK201505022.htm
    张君枝, 袁冯, 王冀, 等. 2020. 全球升温1.5℃和2.0℃背景下北京市暴雨洪涝淹没风险研究[J]. 气候变化研究进展, 16(1): 78-87 https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH202001008.htm
    张前东, 史春彦, 张艳菲, 等. 2018. 济南市长清区暴雨洪涝灾害风险区划[J]. 沙漠与绿洲气象, 12(3): 64-69 https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201803010.htm
    周月华, 彭涛, 史瑞琴. 2019. 我国暴雨洪涝灾害风险评估研究进展[J]. 暴雨灾害, 38(5): 494-501 http://www.byzh.org.cn/CN/abstract/abstract2605.shtml
    Geomer. 2011. FloodAreaHPC-Desktop: ArcGIS-Extension for calculating flooded areas (User manual Version 10.1)[G]. Heidelberg: Heidelberg University
    Noel G, Matt H, Mike D, et al. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 202: 18-27
    Roland L, Christian U, Nina S D, et al. 2017. Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations: a new generation of urban planning tools[J]. Journal of Hydrology, 550: 355-367
    Zischg A P, Mosimann M, Bernet D B, et al. 2018. Validation of 2-D flood models with insurance claims[J]. Journal of Hydrology, 557: 350-361
  • Related Articles

  • Cited by

    Periodical cited type(3)

    1. 杨柳,师春香,韩帅,周雪英,陈颖,冶晓婷. 两种气温多源数据融合实况产品在新疆地区的评估与对比. 沙漠与绿洲气象. 2023(01): 60-68 .
    2. 聂童,高玉芳,彭涛,武雅珍. WRF-Hydro模式结合不同降水产品模拟清江流域径流的效果分析. 暴雨灾害. 2023(04): 395-405 . 本站查看
    3. 俞燎霓,周亦平,傅方奇,黄新晴. 台风“凤凰”暴雨成因及数值模式预报检验分析. 浙江气象. 2022(02): 12-17 .

    Other cited types(2)

Catalog

    Article views (97) PDF downloads (465) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return