Advanced Search
FU Yunfei, LUO Jing, LUO Shuang, CHEN Guangcan, WANG Mengxiao, SUN Lilu, SUN Nan, YANG Liu. 2022: Rainstorm structure of a supercell cloud occurred in Chongqing in May 2018 measured by GPM DPR and GMI. Torrential Rain and Disasters, 41(1): 1-14. DOI: 10.3969/j.issn.1004-9045.2022.01.001
Citation: FU Yunfei, LUO Jing, LUO Shuang, CHEN Guangcan, WANG Mengxiao, SUN Lilu, SUN Nan, YANG Liu. 2022: Rainstorm structure of a supercell cloud occurred in Chongqing in May 2018 measured by GPM DPR and GMI. Torrential Rain and Disasters, 41(1): 1-14. DOI: 10.3969/j.issn.1004-9045.2022.01.001

Rainstorm structure of a supercell cloud occurred in Chongqing in May 2018 measured by GPM DPR and GMI

More Information
  • Received Date: July 27, 2020
  • Accepted Date: December 03, 2020
  • Available Online: November 03, 2022
  • Published Date: February 08, 2022
  • The knowledge of the echo structure of precipitation generated by supercell cloud is still limited. In this study by using measurements of the GPM (Global Precipitation Measurement) DPR (Dual-frequency Precipitation Radar) and GMI (GPM Microwave Imager), combined with observations by the thermal infrared channel of FY-4 (Fengyun-4), a stationary satellite, and temperature/humidity/wind observations by atmospheric sounding, as well as reanalysis data issued by the European Weather Forecast Centre, the vertical cross-section and two-dimensional probability density distribution of radar echoes for a supercell cloud occurred near Chongqing in May 2018 were analyzed. The results show that the supercell cloud system is caused by the convergence of a cold airmass moving from northwest to southeast and a warm-humid airmass. There are subscale systems of convective precipitation and layered precipitation in supercell cloud, which induced strong precipitation located at the junction of Yunnan-Guizhou Plateau and Sichuan Basin to the southwest of the basin. There are many ice phase particles in the supercell cloud. The echo top height of convective precipitation is more than 12 km, and the maximum echo intensity is mostly located 4~5 km above the ground. Convective precipitation has higher precipitation particle concentration than stratiform precipitation, and its particle size is smaller than the latter. The particle size of convective precipitation increases obviously with the decrease of the height, which reflects the obvious collision and growth process of these particles.

  • 丁一汇. 1994. 暴雨和中尺度气象学问题[J]. 气象学报, 52(3): 274-284 doi: 10.3321/j.issn:0577-6619.1994.03.005
    杜小玲, 陶诗言, 张顺利. 2004. 梅雨锋上的三类暴雨[J]. 大气科学, 28(2): 187-205 doi: 10.3878/j.issn.1006-9895.2004.02.03
    杜小玲, 杨静, 彭芳, 等. 2013. 贵州望谟初夏暴雨环境场和物理量场合成分析[J]. 高原气象, 32(5): 1400-1413 https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201305019.htm
    傅云飞. 2019. 卫星主被动仪器遥感中国暴雨的研究进展[J]. 暴雨灾害, 38(5): 554-563 doi: 10.3969/j.issn.1004-9045.2019.05.0016
    傅云飞, 曹爱琴, 李天奕, 等. 2012. 星载测雨雷达探测的夏季亚洲对流与层云降水雨顶高度气候特征[J]. 气象学报, 70(3): 436-451 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201203008.htm
    傅云飞, 李宏图, 自勇. 2007. TRMM卫星探测青藏高原谷地的降水云结构个例分析[J]. 高原气象, 26(1): 98-106 doi: 10.3321/j.issn:1000-0534.2007.01.012
    傅云飞, 冯沙, 刘鹏, 等. 2010. 热带测雨卫星测雨雷达探测的亚洲夏季积雨云云砧[J]. 气象学报, 68(2): 195-206 doi: 10.3969/j.issn.1006-8775.2010.02.012
    傅云飞, 张爱民, 刘勇, 等. 2008. 基于星载测雨雷达探测的亚洲对流和层云降水季尺度特征分析[J]. 气象学报, 66(5): 730-746 doi: 10.3321/j.issn:0577-6619.2008.05.007
    高守亭, 赵思雄, 周小平, 等. 2003. 次天气尺度及中尺度暴雨系统研究进展[J]. 大气科学, 27(4): 618-627 doi: 10.3878/j.issn.1006-9895.2003.04.13
    高守亭, 周玉淑, 冉令坤. 2018. 我国暴雨形成机理及预报方法研究进展[J]. 大气科学, 42(4): 833-846 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201804009.htm
    郭其蕴. 1985. 东亚夏季风的变化与中国降水[J]. 热带气象学报, 1(1): 44-52 https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX198501005.htm
    胡伯威, 崔春光, 房春花. 2001. 1998年7月21—22日鄂东沿江连日特大暴雨成因探讨[J]. 大气科学, 25(4): 479-491 doi: 10.3878/j.issn.1006-9895.2001.04.05
    黄明策, 李江南, 农孟松, 等. 2010. 一次华南西部低涡切变特大暴雨的中尺度特征分析[J]. 气象学报, 68(5): 748-762 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201005017.htm
    李锐, 傅云飞, 赵萍. 2005. 利用热带测雨卫星的测雨雷达资料对1997/1998年El Niño后期热带太平洋降水结构的研究[J]. 大气科学, 29(2): 225-235 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200502006.htm
    廖移山, 冯新, 石燕, 等. 2011.2008年"7.22"襄樊特大暴雨的天气学机理分析及地形的影响[J]. 气象学报, 69(6): 945-955 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201106002.htm
    刘黎平, 邵爱梅, 葛润生, 等. 2004. 一次混合云暴雨过程风场中尺度结构的双多普勒雷达观测研究[J]. 大气科学, 28(2): 278-284 doi: 10.3878/j.issn.1006-9895.2004.02.10
    刘鹏, 王雨, 冯沙, 等. 2012. 冬、夏季热带及副热带穿透性对流气候特征分析[J]. 大气科学, 36(3): 579-589 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201203011.htm
    刘奇, 傅云飞, 刘国胜. 2007. 夏季青藏高原与东亚及热带的降水廓线差异分析[J]. 中国科学技术大学学报, 37(8): 885-894 doi: 10.3969/j.issn.0253-2778.2007.08.011
    刘淑媛, 孙健, 王洪庆, 等. 2007. 香港特大暴雨β中尺度线状对流三维结构研究[J]. 大气科学, 31(2): 353-363 doi: 10.3878/j.issn.1006-9895.2007.02.16
    姜勇强, 王元. 2010. 地形对1998年7月鄂东特大暴雨鞍型场的影响[J]. 高原气象, 29(2): 297-308 https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201002006.htm
    乔林, 陈涛, 路秀娟. 2009. 黔西南一次中尺度暴雨的数值模拟诊断研究[J]. 大气科学, 33(3): 537-550 doi: 10.3878/j.issn.1006-9895.2009.03.11
    沈新勇, 倪允琪, 沈桐立, 等. 2005. β中尺度暴雨系统发生发展的一种可能物理机制Ⅱ. 涡旋Rossby波的形成[J]. 大气科学, 29(6): 854-863 doi: 10.3878/j.issn.1006-9895.2005.06.02
    陶诗言, 方宗义, 蔡则怡, 等. 1980. 中国之暴雨[M]. 北京: 科学出版社: 225
    王宝鉴, 黄玉霞, 魏栋, 等. 2017. TRMM卫星对青藏高原东坡一次大暴雨强降水结构的研究[J]. 气象学报, 75(6): 966-980 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201706009.htm
    王成鑫, 高守亭, 梁莉, 等. 2013. 动力因子对地形影响下的四川暴雨落区的诊断分析[J]. 大气科学, 37(5): 1099-1110 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201305012.htm
    王芬, 谷晓平, 李腹广, 等. 2016. 黔西南一次低涡切变型暴雨的中尺度分析[J]. 沙漠与绿洲气象, 9(5): 41-46 https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201505009.htm
    王雨, 傅云飞, 刘国胜. 2006. 热带测雨卫星TMI探测结果对非降水云液态水路径的反演方案研究[J]. 气象学报, 64(4): 443-452 doi: 10.3321/j.issn:0577-6619.2006.04.005
    吴哲红, 虞苏青, 丁治英, 等. 2008. 贵州地区一次暴雨的数值模拟及不稳定性诊断分析[J]. 高原气象, 27(6): 1307-1314 https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200806015.htm
    夏静雯, 傅云飞. 2016. 东亚与南亚雨季对流和层云降水云内的温湿结构特征分析[J]. 大气科学, 40(3): 563-580 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201603010.htm
    肖递祥, 毛家勋, 李庆. 2010. "09.7"四川攀西暴雨的MCS特征及其成因分析[J]. 暴雨灾害, 29(1): 54-58, 80 doi: 10.3969/j.issn.1004-9045.2010.01.009
    徐祥德, 翁永辉, 孟智勇, 等. 2002. 卫星资料变分分析"98·7"武汉-黄石地区特大暴雨中尺度锋面对流特征[J]. 大气科学, 26(6): 845-856 doi: 10.3878/j.issn.1006-9895.2002.06.12
    叶成志, 潘志祥, 刘志雄, 等. 2007. "03.7"湘西北特大致洪暴雨的触发机制数值研究[J]. 应用气象学报, (4): 468-478 doi: 10.3969/j.issn.1001-7313.2007.04.007
    翟丹华, 刘德, 李强, 等. 2014. 引发重庆中西部暴雨的西南低涡特征分析[J]. 高原气象, 33(1): 140-147 https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201401014.htm
    张奡祺, 傅云飞. 2018. GPM卫星双频测雨雷达探测降水结构的个例特征分析[J]. 大气科学, 42(1): 33-51 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201801003.htm
    张培昌, 杜秉玉, 戴铁丕. 2001. 雷达气象学[M]. 北京: 气象出版社
    周长艳, 唐信英, 邓彪. 2015. 一次四川特大暴雨灾害降水特征及水汽来源分析[J]. 高原气象, 34(6): 1636-1647 https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201506013.htm
    Arkin P A, Meisner B N. 1987. The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982-1984 [J]. Mon Wea Rev, 115: 51-74 doi: 10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2
    Braga R, Vila D A. 2014. Investigating the ice water path in convective cloud life cycles to improve passive microwave rainfall retrievals [J]. J Hydrometeorology, 15(4): 1486-1497 doi: 10.1175/JHM-D-13-0206.1
    Chang F L, Li Z Q. 2005. A New method for detection of cirrus overlapping water clouds and determination of their optical properties [J]. J Atmos Sci, 62: 3993-4009 doi: 10.1175/JAS3578.1
    Chen F J, Fu Y F, Liu P, et al. 2016. Seasonal variability of storm top altitudes in the tropics and subtropics observed by TRMM PR [J]. Atmospheric Research, 169: 113-126 doi: 10.1016/j.atmosres.2015.09.017
    Fu Y F, Lin Y H, Liu G S, et al. 2003. Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR [J]. Advances in Atmospheric Sciences, 20(4): 511-529 doi: 10.1007/BF02915495
    Fu Y F, Liu G S. 2001. The variability of tropical precipitation profiles and its impact on microwave brightness temperatures as inferred from TRMM data [J]. Journal of Applied Meteorology, 40(12): 2130-2143 doi: 10.1175/1520-0450(2001)040<2130:TVOTPP>2.0.CO;2
    Fu Y F, Liu G S. 2003. Precipitation characteristics in mid-latitude East Asia as observed by TRMM PR and TMI [J]. Journal of the Meteorological Society of Japan, 81(6): 1353-1369 http://ci.nii.ac.jp/naid/110001803043/en
    Fu Y F, Pan X, Xian T, et al. 2018. Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS [J]. Climate Dynamics, 51(5-6): 1971-1989 doi: 10.1007/s00382-017-3992-3
    Fu Y F, Qin F. 2014. Summer daytime precipitation in ice, mixed and water phase as viewed by PR and VIRS in tropics and subtropics. Remote sensing of the atmosphere, clouds, and Precipitation V [C]// Eastwood IM, Song Y, Peng Z (eds) Proc. of SPIE, 9259: 925906 © 2014 SPIE CCC code: 0277-786X/14/$18. doi: 10.1117/12.2069128
    Hamada A, Takayabu Y N. 2016. Improvements in detection of light precipitation with the Global Precipitation Measurement dual-frequency precipitation radar (GPMDPR) [J]. J Atmos Oceanic Technol, 33, 653-667 doi: 10.1175/JTECH-D-15-0097.1
    Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis [J]. Q J R Meteorol Soc, 1-51
    Hobbs P V. 1989. Research on clouds and precipitation - past, present, and future [J]. Bulletin of the American Meteorological Society, 70(3): 282-285 doi: 10.1175/1520-0477-70.3.282
    Hou A Y, Kakar R K, Neeck S, et al. 2014. The global precipitation measurement mission [J]. Bulletin of the American Meteorological Society, 95(5): 701-722 doi: 10.1175/BAMS-D-13-00164.1
    Houze R A. 1981. Structures of atmospheric precipitation systems-a global survey [J]. Radio Science, 16(5): 671-689 doi: 10.1029/RS016i005p00671
    Iguchi T, Seto S, Meneghini R, et al. 2012. An overview of the precipitation retrieval algorithm for the Dualfrequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) mission's core satellite [C]// Earth Observing Missions and Sensors: Development, Implementation, and Characterization Ⅱ, 85281C. doi: 10.1117/12.977352
    Kotsuki S, Terasaki K, Miyoshi T. 2014. GPM/DPR precipitation compared with a 3.5-km-resolution NICAM simulation [J]. Sola, 10: 204-209 doi: 10.2151/sola.2014-043
    Li R, Shao W C, Guo J C, et al. 2019. A simplified algorithm to estimate latent heatingrate using verticalrainfall profiles over the Tibetan Plateau[J]. J Geophy Res: Atmos, 124: 942-963 doi: 10.1029/2018JD029297
    Liu G S, Curry J A, Haggerty J A, et al. 2001. Retrieval and characterization of cloud liquid water path using airborne passive microwave data during INDOEX [J]. Journal of Geophysical Research-Atmospheres, 106 (D22): 28719-28730 doi: 10.1029/2000JD900782
    Liu G S, Fu Y F. 2001. The characteristics of tropical precipitation profiles as inferred from satellite radar measurements [J]. Journal of the Meteorological Society of Japan, 79(1): 131-143 http://www.researchgate.net/profile/Yunfei_Fu/publication/250139839_The_Characteristics_of_Tropical_Precipitation_Profiles_As_Inferred_From_Satellite_Radar_Measurements/links/547ff2220cf2ccc7f8bb08c9.pdf
    Liu G, Takeda T. 1989. Two types of stratiform precipitating clouds associated with cyclones [J]. Tenki, 36 (3): 147-157 http://ci.nii.ac.jp/naid/40002511293
    Marks F D, Houze R A. 1987. Inner core structure of hurricane Alicia from airborne Doppler radar observations [J]. Journal of the Atmospheric Sciences, 44(9): 1296-1317 doi: 10.1175/1520-0469(1987)044<1296:ICSOHA>2.0.CO;2
    Rogers R, Reasor P, Lorsolo S. 2013. Airborne doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones [J]. Monthly Weather Review, 141(9): 2970-2991 doi: 10.1175/MWR-D-12-00357.1
    Rose C R, Chandrasekar V. 2006. A GPM dual-frequency retrieval algorithm: DSD profile-optimization method [J]. Journal of Atmospheric and Oceanic Technology, 23(10): 1372-1383 doi: 10.1175/JTECH1921.1
    Szoke E J, Zipser E J, Jorgensen D P. 1986. A radar study of convective cells in mesoscale systems in gate 1: Vertical profile statistics and comparison with hurricanes [J]. Journal of the Atmospheric Sciences, 43(2): 182-197 doi: 10.1175/1520-0469(1986)043<0182:ARSOCC>2.0.CO;2
    Wang R, Fu Y F. 2017. Structural characteristics of atmospheric temperature and humidity inside clouds of convective and stratiform precipitation in the rainy season over East Asia [J]. Journal of Meteorological Research, 31(5): 890-905 doi: 10.1007/s13351-017-7038-x
    Wang Y, Fu Y F, Liu G S, et al. 2009. A new water vapor algorithm for TRMM Microwave Imager (TMI) measurements based on a log linear relationship [J]. Journal of Geophysical Research, 114: D21304. doi: 10.1029/2008JD011057
    Xian T, Fu Y F. 2015. Characteristics of tropopause-penetrating convection determined by TRMM and COSMIC GPS radio occultation measurements [J]. Journal of Geophysical Research: Atmospheres, 120(14): 7006-7024 doi: 10.1002/2014JD022633
    Yang Y J, Lu D R, Fu Y F, et al. 2015. Spectral characteristics of tropical anvils obtained by combining TRMM precipitation radar with visible and infrared scanner data [J]. Pure and Applied Geophysics, 172(6): 1717-1733 doi: 10.1007/s00024-014-0965-x
    Zhang A Q, Fu Y F. 2018. Life cycle effects on the vertical structure of precipitation in east china measured by Himawari-8 and GPM DPR [J]. Monthly Weather Review, 146(7): 2183-2199 doi: 10.1175/MWR-D-18-0085.1
    Zhang A Q, Chen Y L, Zhang X D, et al. 2020. Structure of cyclonic precipitation in the northern pacific storm track measured by GPM DPR [J]. Journal of Hydrometeorology, 21(2): 227-240 doi: 10.1175/JHM-D-19-0161.1
    Zipser E J, Lutz K R. 1994. The vertical profile of radar reflectivity of convective cells- a strong indicator of storm intensity and lightning probability [J]. Monthly Weather Review, 122(8): 1751-1759 doi: 10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2

Catalog

    Article views (189) PDF downloads (345) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return