Citation: | GONG Yu, ZHANG Nan, SUN Hemin, LIU Couhua. 2022: A study on triggering and maintenance mechanism of a linear quasi-stationary convection system in South China. Torrential Rain and Disasters, 41(1): 33-41. DOI: 10.3969/j.issn.1004-9045.2022.01.004 |
At about 08:00 on May 10, 2014, there were scattered convection cells evolving in the vicinity of Yangjiang, Guangdong Province of China. They merged into a quasi-linear-stationary meso-scale convective system (MCS) with the scale of about 200 km. This MCS lasted for almost 16 hours with a maximum rainfall of 372 mm. By analyzing observational data and conducting a terrain sensitive numerical simulation experiment, it is found that under a favorable large-scale water vapor thermal condition, the special meso-scale dynamic structure of continued interaction of the thermal structure with the Yunwu Mountain terrain is the key factor in the MCS triggering and maintenance mechanism. The night-enhanced super-low level jet (SLLJ) constitutes a"channel"for the warm and humid air flowing to the north, enhancing the unstable convective stratification, so that the warm and humid air was blocked by the mountain terrain and forced up to reach the free convection height, and the Convective Available Potential Energy (CAPE) of the air is triggered to release. Then dispersed convective cells emerged near the Yunwu Mountain, and moved eastward under the middle level leading wind. Due to the above-mentioned meso-scale dynamic thermal structural features with the topographical elevation of the Yunwu Mountain continuously existed, the linear quasi-stationary MCS formed and maintained for a long time.
陈良栋. 1993. 大尺度形势对中尺度对流风暴影响的研究[J]. 气象, 19(7): 3-7 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX199307001.htm
|
陈业国, 沈桐立, 唐文. 2008.2007年华南一次强飑线过程的雷达回波分析及数值模拟[J]. 暴雨灾害, 27(2): 41-46 http://www.byzh.org.cn/CN/abstract/abstract1129.shtml
|
程麟生, 郭英华. 1999. 初始条件和大地形对西南涡演变的中尺度模拟影响[J]. 兰州大学学报, 26(4): 142-149 https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK199004024.htm
|
崔春光, 闵爱荣, 胡伯威. 2002. 中尺度地形对"98·7" 鄂东大暴雨的动力作用[J]. 气象学报, 60(5): 602-612 doi: 10.3321/j.issn:0577-6619.2002.05.011
|
段丽, 陈联寿, 徐祥德. 2006. 山脉地形对热带风暴Fitow结构和运动影响的数值试验[J]. 气象学报, 64(2): 186-193 doi: 10.3321/j.issn:0577-6619.2006.02.006
|
郭弘, 林永辉, 周淼, 等. 2014. 华南暖区暴雨中一次飑线的中尺度分析[J]. 暴雨灾害, 33(2): 171-180 doi: 10.3969/j.issn.1004-9045.2014.02.010
|
胡东明, 魏超时, 赵坤, 等. 2019.2008年华南一次线状对流的双多普勒雷达探测结果分析[J]. 暴雨灾害, 38(3): 193-203 doi: 10.3969/j.issn.1004-9045.2019.03.001
|
黄士松. 1986. 华南前汛期暴雨[M]. 广东: 广东科技出版社: 244
|
姜勇强, 王元. 2010. 地形对1998年7月鄂东特大暴雨鞍型场的影响[J]. 高原气象, 29(2): 297-308 https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201002006.htm
|
金巍, 曲岩, 姚秀萍, 等. 2007. 一次大暴雨过程中低空急流演变与强降水的关系[J]. 气象, 33(12): 31-38 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200712006.htm
|
柯文华, 俞小鼎, 林伟旺, 等. 2012. 一次由"列车效应" 造成的致洪暴雨分析研究[J]. 气象, 38(5): 552-560 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201205007.htm
|
孙素琴, 郑婧, 支树林, 等. 2015. 一次由"列车效应" 引发的梅雨锋暴雨研究[J]. 高原气象, 34(1): 190-201 https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501020.htm
|
田付友, 郑永光, 张涛, 等. 2015. 短时强降水诊断物理量敏感性的点对面检验[J]. 应用气象学报, 26(4): 385-396 https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201504001.htm
|
叶朗明, 伍志方, 张华龙, 等. 2016. 相同季节和相似区域华南两次飑线过程比较分析[J]. 暴雨灾害, 35(5): 445-454 doi: 10.3969/j.issn.1004-9045.2016.05.006
|
张春喜, 朱佩君, 郑永光, 等. 2005. 一次春季暴雨不稳定条件和对流触发机制的数值模拟研究[J]. 北京大学学报(自然科学版), 41(5): 746-753 doi: 10.3321/j.issn:0479-8023.2005.05.013
|
周天军, 钱永甫. 1996. 地形效应影响数值预报结果的试验研究[J]. 大气科学, 20(4): 452-462 doi: 10.3878/j.issn.1006-9895.1996.04.10
|
Chang P L, Lin P F, Jou J D, et al. 2009. An application of reflectivity climatology in constructing radar hybrid scans over complex terrain[J]. Journal of Atmospheric and Oceanic Technology, 26(7): 1315-1327 doi: 10.1175/2009JTECHA1162.1
|
Chen X, Zhao K, Xue M. 2014. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data[J]. Journal of Geophysical Research: Atmospheres, 119(22): 12447-12465
|
Chen X, Zhao K, Ming X, et al. 2015. Radar-observed diurnal cycle and propagation of convection over the Pearl River Delta during Mei-Yu season[J]. Journal of Geophysical Research: Atmospheres, 120(24): 12557-12575 doi: 10.1002/2015JD023872
|
Chen X C, Zhang F Q, Zhao K. 2016. Diurnal variations of the land-sea breeze and its related precipitation over South China[J]. Journal of the Atmospheric Sciences, 73(12): 4793-4815 doi: 10.1175/JAS-D-16-0106.1
|
Corfidi S F, Stephen F. 2010. Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs[J]. Weather and forecasting, 18(6): 997-1017
|
Doswell C A, Brooks H E, Maddox R A. 1996. Flash flood forecasting: An ingredients-based methodology[J]. Weather and Forecasting, 11(4): 560-581 doi: 10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2
|
Houze Jr R A, Smull B F, Dodge P. 1990. Mesoscale organization of springtime rainstorms in Oklahoma[J]. Monthly Weather Review, 118(3): 613-654 doi: 10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2
|
Lai H W, Davis C A, Jou J D. 2011. A subtropical oceanic mesoscale convective vortex observed during SoWMEX/TiMREX[J]. Monthly weather review, 139(8): 2367-2385 doi: 10.1175/2010MWR3411.1
|
Luo Y, Wang H, Zhang R, et al. 2013. Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai River Basin[J]. Journal of Climate, 26(1): 110-132 doi: 10.1175/JCLI-D-12-00100.1
|
Luo Y, Gong Y, Zhang D L. 2014. Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a mei-yu front in east China[J]. Monthly Weather Review, 142(1): 203-221 doi: 10.1175/MWR-D-13-00111.1
|
Maddox R A, Chappell C F, Hoxit L R. 1979. Synoptic and meso-α scale aspects of flash flood events[J]. Bulletin of the American Meteorological Society, 60(2): 115-123 doi: 10.1175/1520-0477-60.2.115
|
Schumacher R S, Johnson R H. 2004. Organization and environmental properties of extreme-rain-producing mesoscale convective systems[J]. Monthly weather review, 133(4): 961-976
|
Schumacher R S, Johnson R H. 2009, Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations[J]. Weather and forecasting, 24(2): 555-574 doi: 10.1175/2008WAF2222173.1
|
Schumacher R S, Clark A J, Xue M, et al. 2013. Factors influencing the development and maintenance of nocturnal heavy-rain-producing convective systems in a storm-scale ensemble[J]. Monthly weather review, 141(8): 2778-2801 doi: 10.1175/MWR-D-12-00239.1
|
Tu C C, Chen Y L, Chen C S, et al. 2014. A comparison of two heavy rainfall events during the Terrain-Influenced Monsoon Rainfall Experiment(TiMREX) 2008[J]. Monthly Weather Review, 142(7): 2436-2463 doi: 10.1175/MWR-D-13-00293.1
|
Wang H, Luo Y, Jou B J D. 2014. Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis[J]. Journal of Geophysical Research: Atmospheres, 119(23): 13206-13232 doi: 10.1002/2014JD022339
|
Xu W, Zipser E J, Liu C. 2009. Rainfall characteristics and convective properties of mei-yu precipitation systems over South China, Taiwan, and the South China Sea. Part Ⅰ: TRMM observations[J]. Monthly weather review, 137(12): 4261-4275 doi: 10.1175/2009MWR2982.1
|
Xu W, Zipser E J, Chen Y L, et al. 2012. An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance[J]. Monthly weather review, 140(8): 2555-2574 doi: 10.1175/MWR-D-11-00208.1
|
Yu R, Zhou T, Xiong A, et al. 2007. Diurnal variations of summer precipitation over contiguous China[J]. Geophysical Research Letters, 34(1): 223-234
|
1. |
邓汝伊,蒋健,梁栋. 广西8月一次大范围暴雨过程的预报检验分析. 气象研究与应用. 2022(03): 98-102 .
![]() |