Advanced Search
FAN Sirui, WANG Weijia. 2022: Analysis on the microphysical characteristics of weak precipitation process observation of a stratiform cloud in Sichuan Basin in autumn. Torrential Rain and Disasters, 41(4): 445-457. DOI: 10.3969/j.issn.1004-9045.2022.04.009
Citation: FAN Sirui, WANG Weijia. 2022: Analysis on the microphysical characteristics of weak precipitation process observation of a stratiform cloud in Sichuan Basin in autumn. Torrential Rain and Disasters, 41(4): 445-457. DOI: 10.3969/j.issn.1004-9045.2022.04.009

Analysis on the microphysical characteristics of weak precipitation process observation of a stratiform cloud in Sichuan Basin in autumn

More Information
  • Received Date: October 24, 2021
  • Accepted Date: February 19, 2022
  • Available Online: November 03, 2022
  • Published Date: July 31, 2022
  • Using observation data from a Ka-band millimeter wave cloud radar, a raindrop spectrometer, a L-band Basin in autumn is analyzed, especially focusing on its macro and microstructure characteristics and raindrop spectrum distribution characteristics. The melting layer (radar echo bright band) is analyzed in detail. The results are as follows. (1) There were convective bubbles in the cloud system. The rainrate was mostly below 2 mm·h-1, and the peak precipitation had a good correspondence with the convective bubbles. (2) The cloud system before precipitation was mainly stratiform with the cloud top about 3 km and the cloud base about 1.5 km. Cloud drops were mainly liquid particles with small particle size and in single phase state. The cloud system during the precipitation development period was dominated by stratiform clouds, accompanied by convective bubbles. The stratified cloud top was about 4 km, and the convective bubble cloud top in the cloud system reached up to 10 km. The radar echoes reached the ground and ground precipitation formed. There was a clear bright band (melting layer) phenomenon in the cloud system. Above the melting layer were ice crystals, graupels, super-cooled water, etc. In the melting layer clouds were consisted of mixed-phase particles. Below the melting layer there were raindrops, super-cooled water, drizzles, etc. The cloud system during the precipitation dissipation period became double-layer. The lower layer was dominated by stratocumulus clouds, with cloud tops below 4 km, dominated by liquid particles with small particle sizes and in single phase state. The upper layer was dominated by altocumulus clouds, the cloud base was about 5 km, and the cloud top extended above 8km, which was dominated by ice particles with small particle size and in single phase state. (3) The cloud drop spectra in the early precipitation period and the development period showed single peak structure, mainly small particles. The spectra were narrow. The spectra width was between 0.312 mm and 2.375 mm. The peaks were all located at 0.437 mm. The cloud drop spectra during the precipitation dissipation period were bimodal, with peaks located at 0.437 mm and 1.375 mm. The raindrop spectra was broader and number concentration was larger during the precipitation development period. (4) The thickness of the bright band zone of the stratified precipitation cloud system was 200~600 m, and the thickness of the bright band zone was different for different radar parameters. The depolarization ratio is most sensitive to the bright band layer, and the bright band information appears on its vertical profile first, which is an important indicator of the phase change of particles. The thickness of the bright band is highly correlated with the difference in radial velocity, spectral width, and depolarization ratio, but has little relation with the difference in echo intensity.

  • 蔡淼, 欧建军, 周毓荃, 等. 2014. L波段探空判别云区方法的研究[J]. 大气科学, 38(2): 213-222
    陈玲, 周筠珺. 2015. 青藏高原和四川盆地夏季降水云物理特性差异[J]. 高原气象, 34(3): 621-632
    陈羿辰, 金永利, 丁德平, 等. 2018. 毫米波测云雷达在降雪观测中的应用初步分析[J]. 大气科学, 42(1): 134-149
    陈永仁, 李跃清. 2013. "12·7·22"四川暴雨的MCS特征及对短时强降雨的影响[J]. 气象, 39(7): 848-860
    范思睿, 王维佳. 2019. 四川盆地云和降水观测科学试验设计与实践[J]. 气象科技, 47(2): 191-200
    黄毅梅, 周毓荃. 2012.95GHz云雷达对一次冷锋云系结构的观测分析[J]. 高原气象, 31(4): 1129-1138
    黄毅梅, 周毓荃, 杨敏. 2017. 利用3mm云雷达资料分析混合相云垂直结构及过冷水分布[J]. 高原气象, 36(1): 219-228
    黄钰, 郭学良, 毕凯, 等. 2020. 北京延庆山区降雪云物理特征的垂直观测和数值模拟研究[J]. 大气科学, 44(2): 356-370
    金龙, 阮征, 葛润生, 等. 2016. C-FMCW雷达对江淮降水云零度层亮带探测研究[J]. 应用气象学报, 27(3): 312-322
    柳臣中, 周筠珺, 谷娟, 等. 2015. 成都地区雨滴谱特征[J]. 应用气象学报, 26(1): 112-121
    刘黎平. 2021. 毫米波云雷达观测和反演云降水微物理及动力参数方法研究进展[J]. 暴雨灾害, 40(3): 231-242 doi: 10.3969/j.issn.1004-9045.2021.03.002
    刘黎平, 郑佳锋, 阮征, 等. 2015.2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果[J]. 气象学报, 73(4): 635-647
    刘黎平, 仲凌志, 江源, 等. 2009. 毫米波测云雷达系统及其外场试验结果初步分析[J]. 气象科技, 37(5): 567-571 doi: 10.3969/j.issn.1671-6345.2009.05.011
    刘黎平, 周淼. 2016. 垂直指向的Ka波段云雷达观测的0℃层亮带自动识别及亮带的特征分析[J]. 高原气象, 35(3): 734-744
    刘平, 黄彦彬, 王维佳, 等. 2021. 基于雨滴谱的增雨作业微物理特征分析[J]. 气象科技, 49(2): 244-252
    刘晓冉, 李国平, 范广洲, 等. 2007. 我国西南地区1960-2000年降水资源变化的时空特征[J]. 自然资源学报, 22(5): 783-792 doi: 10.3321/j.issn:1000-3037.2007.05.013
    石爱丽, 郑国光, 黄庚, 等. 2004.2002年秋季河南省层状云降水的雨滴谱特征[J]. 气象, 30(8): 12-17 doi: 10.3969/j.issn.1000-0526.2004.08.003
    唐红玉, 顾建峰, 张焕, 等. 2011. 西南地区降水日变化特征分析[J]. 高原气象, 30(2): 376-384
    万霞, 徐桂荣, 万蓉, 等. 2020. 青藏高原东侧甘孜云雷达观测的非降水云垂直结构特征分析[J]. 暴雨灾害, 39(5): 442-450 http://www.byzh.org.cn/CN/abstract/abstract2683.shtml
    王维佳, 董晓波, 石立新, 等. 2011a. 一次多层云系云物理垂直结构探测研究[J]. 高原气象, 30(5): 1368-1375
    王维佳, 刘建西, 石立新, 等. 2011b. 四川盆地降水云系飞机云物理观测个例分析[J]. 气象, 37(11): 1389-1394
    吴翀, 刘黎, 翟晓春. 2017. Ka波段固态发射机体制云雷达和激光云高仪探测青藏高原夏季云底高度能力和效果对比分析[J]. 大气科学, 41 (4): 659-672
    吴举秀, 魏鸣, 王以琳. 2015. 利用毫米波测云雷达反演层状云中过冷水[J]. 干旱气象, 33(2): 227-235
    吴举秀, 魏鸣, 周杰. 2014.94 GHz云雷达回波及测云能力分析[J]. 气象学报, 72(2): 402-416
    谢晓林, 刘黎平. 云雷达联合微波辐射计反演混合性降水层云液态水含量的方法研究[J]. 暴雨灾害, 2016, 35(1): 1-9 doi: 10.3969/j.issn.1004-9045.2016.01.001
    张培昌, 戴铁丕, 杜秉玉, 等. 1988. 雷达气象学[M]. 北京: 气象出版社
    张琪, 李跃清, 陈权亮, 等. 2011. 近46年西南地区云量的时空变化特征[J]. 高原气象, 30(2): 339-348
    张日伟, 严卫, 韩丁, 等. 2012. 基于Rs92探空资料的云垂直结构判定及其分布研究[J]. 遥感技术与应用, 27(2): 231-236
    郑佳峰, 刘黎平, 曾正茂, 等. 2016. Ka波段毫米波云雷达数据质量控制方法[J]. 红外与毫米波学报, 35(6): 748-757
    周毓荃. 2004. 河南层状云系多尺度结构和人工增雨条件的研究[D]. 南京: 南京气象学院
    宗蓉. 2013. 毫米波雷达对云宏微观特性的探测和研究[D]. 南京: 南京信息工程大学
    Ackerman T P, Stokes G M. 2003. The atmospheric radiation measurement program[J]. Physics Today, 56(1): 38-44 doi: 10.1063/1.1554135
    Austin P M, Bemis A. 1950. A quantitative study of the bright band in radar precipitation echoes[J]. Journal of Meteorology, 7(2): 145-151 doi: 10.1175/1520-0469(1950)007<0145:AQSOTB>2.0.CO;2
    GÖrsdorf U, Lehmann V, Bauer-Pfundstein M, et al. 2015. A 35-GHz polarimetric Doppler radar for long-term observations of cloud parameters-description of system and data processing[J]. Journal of Atmospheric & Oceanic Technology, 32(4): 675-690
    Kollias P, Albrecht B A. 2000. The turbulence structure in a continental stratocumulus cloud from millimeter-wavelength radar observations[J]. Journal of Atmospheric & Oceanic Technology, 57(15): 2417-2434
    Kollias P, Albrecht B A, Marks F D Jr. 2003. Cloud radar observations of vertical drafts and microphysics in convective rain[J]. Journal of Geophysical Research, 108 (D2): 4053, 10.1029/2001JD002033 doi: 10.1029/2001JD002033
    Kollias P, Clothiaux E E, Miller M A, et al. 2007. Millimeter wavelength radars: New frontier in atmospheric cloud and precipitation research[J]. Bulletin of American Meteorological Society, 88(10): 1608-1624 doi: 10.1175/BAMS-88-10-1608
    Lhermitte R M. 1987a. 94GHz Doppler radar for cloud observations[J]. Journal of Atmospheric & Oceanic Technology, 4(1): 36-48
    Lhermitte R M. 1987b. Small cumuli observed with a 3mm wavelength Doppler radar[J]. Geophys Res Lett, 14(7): 707-710 doi: 10.1029/GL014i007p00707
    Luke E, Kollias P, Johnson K, et al. 2008. A technique for the automatic detection of insect clutter in cloud radar returns[J]. Journal of Atmospheric & Oceanic Technology, 25(9): 1498-1513
    Stephens G L, Norman B W. 2007. Properties of tropical convetion observed by millimeter-wave radar systems[J]. Bulletin of American Meteorological Society, 135(3): 821-841
    Stokes G M, Schwartz S E. 1994. The atmospheric radiation measurement program: programmatic background and design of the cloud and radiation test bed[J]. Bulletin of American Meteorological Society, 75(7): 1201-1221 doi: 10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2

Catalog

    Article views (164) PDF downloads (380) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return