Advanced Search
Li Chao, LI Xingliang, CHEN Dehui. 2012: The effect of two kinds of terrain-following coordinates on the simulation of a severe precipitation process. Torrential Rain and Disasters, 31(2): 116-123.
Citation: Li Chao, LI Xingliang, CHEN Dehui. 2012: The effect of two kinds of terrain-following coordinates on the simulation of a severe precipitation process. Torrential Rain and Disasters, 31(2): 116-123.

The effect of two kinds of terrain-following coordinates on the simulation of a severe precipitation process

More Information
  • Published Date: June 14, 2012
  • Selecting a classic height-based terrain-following coordinate (hereafter as Gal-C. S. coordinate) and a new smoothed level vertical height-based terrain-following coordinate (hereafter as SLEVE1 coordinate), the numerical simulations for a severe precipitation process and the comparative analysis on effects of two kinds of terrain-following coordinates on the simulating results were performed with the GRAPES_Meso regional model. Numerical simulations of the severe precipitation process show that the GRAPES_Meso model using SLEVE1 coordinate could improve the accuracy of the PGF (Pressure Gradient Force) calculations and the elements forecasts such as precipitation, wind, temperature and geopotential height. Comparing with Gal.C.S coordinate, SLEVE1 coordinate reduced the hypocritical precipitation caused by the hypocritical vertical velocity through smoothing the topographic factors in the coordinate planes. The small-scale noise in the isoclines was decayed to a certain degree in the vertical cross section of the elements of SLEVE1 coordinate, so the RMS errors were reduced and the correlation coefficients were increased. Besides, the smaller the critical decaying height of SLEVE1 coordinate was, the better the simulation results were. The critical decaying height of SLEVE1 coordinate is bound by the maximum terrain height.
  • 李兴良,陈德辉.非静力中尺度高分辨率模式模拟中的垂直坐标影响研究[J].气象学报,2005 63(2):161-171.
    Phillips N A. A coordinate system having some special advantages for numerical forecasting [J]. J Meteor, 1957, 14(2): 184-185.
    S ch a?r C,, Leuenberger D, Fuhrer O, et al. A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon [J].Wea Rev, 2002, 130: 2459-2480.
    Mesinger F. A blocking technique for representation of mountains in atmospheric models [J]. Riv Meteor Aeronautica, 1984, 44:195-202.
    Smagorinsky J, Holloway J L, Hembree G D. Prediction experiments with a general circulation model [C]. Proc Inter Symp, Dynamics Large Scale Atmospheric Processes, 1967: 70-134.
    杨晓娟,钱永甫. P-σ 坐标系数值模式中气压梯度力的递推算法[J].大气科学, 2003,27(2):171-181.
    钱永甫,周天军.陡峭地形区气压梯度力的误差扣除法[J].热带气象学报,1994,10(4):358-368.
    钱永甫,颜宏,王谦谦,等.行星大气中地形效应的数值研究[J].北京:科学出版社,1988:39-41.
    钱永甫,王云峰.数值模式中气压梯度力的算法试验[J].气象学报,1991,49(3):538-547.
    李艺苑.大气方程垂直坐标新方案的研究及其检验[D].北京:中国科学院大气物理研究所, 2011.
    KLEMP J B. A terrain-following coordinate with smoothed coordinate surfaces [J]. Monthly weather review, 2011, 139: 2163-2169.
    Gal-chen T J, Somerville R C. On use of a coordinate transformation for the resolution of the Navier-Stokes equation [J]. J Com-put Phys, 1975,17(2): 209-228
    陈德辉,薛纪善,杨学胜,等.GRAPES 新一代全球/区域多尺度统一数值预报模式总体设计研究[J].科学通报,2008,53(20):2396-2407.
    李超,陈德辉,李兴良.大气数值预报模式中高度地形追随坐标的设计研究:理论分析与理想试验[J].气象学报,2012(待发表).
    薛纪善,陈德辉.数值预报系统GRAPES 的科学设计与应用[M].北京:科学出版社,2008.

Catalog

    Article views (1178) PDF downloads (1166) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return